K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2015

I. Bất đẳng thức Côsi

 

 

 * Khi áp dụng bđt côsi thì các số phải là những số không âm

 * BĐT côsi thường được áp dụng khi trong bđt cần chứng minh có tổng và tích

 * Điều kiện xảy ra dấu ‘=’ là các số bằng nhau

 

Một số chú ý khi sử dụng bất đẳng thức côsi:

 * Khi áp dụng bđt côsi thì các số phải là những số không âm

 * BĐT côsi thường được áp dụng khi trong bđt cần chứng minh có tổng và tích

 * Điều kiện xảy ra dấu ‘=’ là các số bằng nhau

24 tháng 10 2018

em lớp 6 nên ko biết làm

hihi

15 tháng 10 2019

\(\frac{a_1+a_2+...+a_n}{_n}\ge\sqrt[n]{a_1.a_2......a_n}\)

19 tháng 1 2022

\(x+\dfrac{16}{x-1}\\ =x-1+\dfrac{16}{x-1}+1\)

Áp dụng BĐT Cô-si ta có:
\(x-1+\dfrac{16}{x-1}+1\\ \ge2\sqrt{\left(x-1\right).\dfrac{16}{x-1}}+1\\ =2\sqrt{16}+1\\ =9\)

Dấu "=" xảy ra

 \(\Leftrightarrow x-1=\dfrac{16}{x-1}\\ \Leftrightarrow\left(x-1\right)^2=16\\ \Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

 

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
ĐK: $x,y,z\geq 0$

Áp dụng BĐT Cô-si:

\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\geq 3\sqrt[3]{\frac{xyz}{(x+1)(y+1)(z+1)}}\)

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\sqrt[3]{\frac{1}{(x+1)(y+1)(z+1)}}\)

Cộng theo vế và thu gọn:

\(3\geq 3.\frac{\sqrt[3]{xyz}+1}{\sqrt[3]{(x+1)(y+1)(z+1)}}\Leftrightarrow (x+1)(y+1)(z+1)\geq (1+\sqrt[3]{xyz})^3\)

Dấu "=" xảy ra khi $x=y=z$

Thay vào pt $(1)$ thì suy ra $x=y=z=1$

8 tháng 7 2021

Ta cần c/m: \(\dfrac{a+b}{2}\ge\sqrt{ab}\left(1\right)\) (a;b ≥ 0)

Thật vậy:

\(\left(1\right)\Leftrightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\\ \Leftrightarrow\dfrac{a^2+2ab+b^2}{4}\ge ab\\ \Leftrightarrow a^2+2ab+b^2\ge4ab\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(\text{luôn đúng }\forall a;b\ge0\right)\)

Vậy BĐT Cô-si cho 2 số không âm được c/m.

AH
Akai Haruma
Giáo viên
21 tháng 10 2023

Bạn cần rút gọn đa thức nào thì nên ghi đầy đủ đa thức đó ra nhé.