Tính tổng 100 số hạng đầu tiên của dãy sau
A)1/1*2 ;1/2*3 ;1/3*4 ;1/4*5 ; ...
B)1/6;1/66;1/176;1/336;...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) Số hạng thứ 100 của tổng là:
(100-1) * 3 + 5 = 302
b) Tổng 100 số hạng đầu tiên là:
(302 + 5) * 100 : 2 = 15350
Đ/S: a) 302
b) 15350
Câu 2:
a) Số hạng thừ 50 của tổng là:
(50 - 1) * 5 + 7 =252
b) Tổng 50 số hạng đầu là:
(252 + 7) * 50 : 2 =6475
Đ/S: a) 252
b) 6475
s=5+8+11+14+..
nhận xét :5+3=8
8+3=11
11+3=14
...............
vậy => dãy số trên là dãy số cách đều 3 đv
giả sử coi số hạng đứng thứ 100 của dãy là số hạng cuối cùng của dãy và là x.ta có:
(x-5):3+1=100
(x-5):3=100-1
(x-5):3=99
x-5=99x3
x-5=297
x=297+5
x=302
vậy số hạng đứng thứ 100 của dãy là: 302
b) ta có dãy :5+8+11+14+..
(302+5) x100:2=15350
cậu giải tương tự như trên nhá
công thức tính số hạng thứ n là:(số cuối -số đầu):khoảng cách +1
---------------------------------tính tổng:(sc+sđ)x số số hạng :2
mỗi số hàng ở day đó hơn nhau số đơn vị là :
4 -1 = 3
số hạng thứ 100 của dãy là:
1+ (100 - 1)*3=300
đáp số : 300
Tính: S=1/6+1/66+1/176+1/336+...
1/6= 1/1x6; 1/66= 1/6 x11; đại loại thế
Số hạng thứ 100 là: 1 +5 x(100-1)=496.
Phân số thứ 100 là:1/496 x501
Dãy đầy đủ là: S=1/1x6+1/6x11+1/11x 16+...+1/496x501
Nhân 2 vế S với 5
Sx5 =5/1x6+5/6x11+5/11x 16+...+5/496x501= 1/1-1/501=500/501
S= 100/501
Bài 1: A= 1x2+2x3+3x4+...+98x99 A x 3= 1x2 x (3-0) +2x3x (4-1)+3x4 x (5-2)+...+98x99x (100-97) = 1x2x3+2x3x4+......98x99x100- (1x2x0+ 2x3x1+....+ 98x99x97) = 98x99x100. Bài 2: Tính: S=1/6+1/66+1/176+1/336+... 1/6= 1/1x6; 1/66= 1/6 x11; đại loại thế Số hạng thứ 100 là: 1 +5 x(100-1)=496. Phân số thứ 100 là:1/496 x501 Dãy đầy đủ là: S=1/1x6+1/6x11+1/11x 16+...+1/496x501 Nhân 2 vế S với 5 Sx5 =5/1x6+5/6x11+5/11x 16+...+5/496x501= 1/1-1/501=500/501 S= 100/501
1. Số thứ 100 là :
1 + ( 100 - 1 ) x 3 = 298
2.Tổng của 100 số hạng đầu tiên là :
( 298 + 1 ) x 100 : 2 = 14950
3. Các số 111 , 22222 không có trong dãy số
nhớ k nha
1) ta có : ( x - 1 ) : 3 + 1 = 100
( x - 1 ) : 3 = 99
x - 1 = 297
=> x = 298
vậy số thứ 100 của dãy là 298
1/1-1/2=1/1.2
1/2-1/3=1/2.3
........1/n-1/n+1=1/n(n+1)
=1/1.2+1/2.3+.......+1/100.101
=1/1-1/2+1/2-1/3+......+1/100-1/101
=1-1/101=100/101
ai tích mk ;mk tích lại
Ta có: \(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};...;\dfrac{1}{x}\)
\(=\dfrac{1}{1.2};\dfrac{1}{2.3};\dfrac{1}{3.4};\dfrac{1}{4.5};...;\dfrac{1}{n\left(n+1\right)}\)
=> Số hạng thứ 100 và 2022 lần lượt là: \(\dfrac{1}{100.101}=\dfrac{1}{10100};\dfrac{1}{2022.2023}=\dfrac{1}{4090506}\)
Tổng 100 số hạng đầu tiên:
- Ta có: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...\)
\(\Rightarrow=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...+\left(-\dfrac{1}{100}+\dfrac{1}{100}\right)-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
-Dãy số tổng quát:
\(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};...;\dfrac{1}{n\left(n+1\right)}\)(n thuộc N*)
-Số hạng thứ 100 của dãy: \(\dfrac{1}{100\left(100+1\right)}=\dfrac{1}{10100}\)
-Số hạng thứ 2022 của dãy: \(\dfrac{1}{2022\left(2022+1\right)}=\dfrac{1}{4090506}\)
- Tổng 100 số hạng đầu tiên của dãy:
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{10100}\)=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{100.101}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
=\(1-\dfrac{1}{101}=\dfrac{100}{101}\)
102 chia 3 không dư
=>102 không thuộc dãy này
u1=1; d=3
Tổng 100 số hạng đầu tiên là:
\(100\cdot1+\dfrac{100\cdot99}{2}\cdot3=14950\)
Ta thấy như sau:
4 : 3 = 1 dư 1
7 : 3 = 2 dư 1
....
Vậy các số hạng của dãy số trên đều chia 3 dư 1 trừ số hạng đầu tiên 1:
Vậy: 102 : 3 = 34 dư 0
Nên 102 không thuộc dãy số trên
Ta có như sau:
4 = 3 x 1 + 1
7 = 3 x 2 + 1
...
Số hạng thứ 100 là:
3 x 99 + 1 = 298
Tổng 100 số hạng đầu tiên là:
\(\left(298+1\right)\times100:2=14950\)
`A)1/(1.2)+1/(2.3)+....+1/(100.101)`
`=1-1/2+1/2-1/3+...+1/100-1/101`
`=1-1/101=100/101`
a) Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{100\cdot101}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)