K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

A B C H 60

 Xét tam giác ABC vuông tại A 

Ta có \(\widehat{BAC}=90^o\)(GT)

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)( hai góc bù nhau )

Mà \(\widehat{ABC}=60^o\)(GT)

\(\Rightarrow\widehat{ACB}=30^o\)( Bù nhau )

Xét tam giác AHC vuông tại H  ta có :

\(\widehat{ACH}=30^o\)(CMT)

\(\Rightarrow\widehat{ACH}+\widehat{HAC}=90^o\)( hai góc bù nhau )

\(\Rightarrow30^o+\widehat{HAC}=90^o\)

\(\Rightarrow\widehat{HAC}=60^o\)

Vì \(\widehat{ABC}=60^o\left(gt\right)\)

Có \(\widehat{HAC}=60^o\left(cmt\right)\)

\(\Rightarrow\widehat{ABC}=\widehat{HAC}=60^o\)

a) Xét ΔABC có 

BA<BC(gt)

mà góc đối diện với cạnh BA là \(\widehat{ACB}\)

và góc đối diện với cạnh BC là \(\widehat{BAC}\)

nên \(\widehat{BAC}>\widehat{ACB}\)(Quan hệ giữa cạnh và góc đối diện trong tam giác)

b) Xét ΔABH vuông tại H và ΔAMH vuông tại H có

HB=HM(gt)

AH chung

Do đó: ΔABH=ΔAMH(hai cạnh góc vuông)

Suy ra: BA=MA(hai cạnh tương ứng)

Xét ΔBAM có BA=MA(cmt)

nên ΔBAM cân tại A(Định nghĩa tam giác cân)

Xét ΔBAM cân tại A có \(\widehat{B}=60^0\)(gt)

nên ΔBAM đều(Dấu hiệu nhận biết tam giác đều)

23 tháng 8 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: AH⊥BC (gt) ⇒ ΔAHB vuông tại H

Trong tam giác vuông AHB ta có: ∠BHA = 90o

⇒ ∠B + ∠BAH = 90o (1)

Trong tam giác vuông ABC ta có: ∠BAC = 90o

⇒ ∠B + ∠C = 90o (2)

Từ (1) và (2) suy ra: ∠BAH = ∠C (3)

+) Vì AI là tia phân giác của góc BAC nên:

∠(BAI) = ∠(IAH) = 1/2.∠BAH (4)

Do CI là tia phân giác của góc ACB nên:

∠(ACI) = ∠(ICB) = 1/2.∠C (5)

+) Từ (3); (4) và (5) suy ra:

∠(BAI) = ∠(IAH) = ∠(ACI) = ∠(ICB)

+) Lại có:

∠BAI + ∠IAC = 90º

Suy ra: ∠ICA + ∠IAC = 90º

Trong ΔAIC có: ∠ICA+ ∠IAC = 90º

Vậy: ∠AIC = 90º.

17 tháng 8 2021

 ko thấy phần b thì phải 

 

13 tháng 8 2021

cái c là 30 độ nha mn

a: Xét ΔADC có 

\(\widehat{ADC}+\widehat{DAC}+\widehat{C}=180^0\)

\(\Leftrightarrow\widehat{ADH}=180^0-30^0-45^0\)

hay \(\widehat{ADH}=105^0\)

10 tháng 5 2020

a) Xét ΔABC có Bˆ>CˆB^>C^

mà cạnh đối diện với góc B là AC

và cạnh đối diện với góc C là AB

nên AC>AB

hay AB<AC(Định lí 2 về quan hệ giữa cạnh và góc trong tam giác)

b) Xét ΔABC có AB<AC(cmt)

mà hình chiếu của AB trên BC là HB

và hình chiếu của AC trên BC là HC

nên HB<HC(định lí 2 về quan hệ giữa đường vuông góc, đường xiên và hình chiếu)

c) Xét ΔDBC có HB<HC(cmt)

mà hình chiếu của DB trên BC là HB

và hình chiếu của DC trên BC là HC

nên DB<DC(định lí 1 về quan hệ giữa đường vuông góc, đường xiên và hình chiếu)

Xét ΔDBC có DB<DC(cmt)

mà góc đối diện với DB là góc DCB

và góc đối diện với DC là góc DBC

nên DBCˆ>DCBˆDBC^>DCB^(định lí 1 về quan hệ giữa góc và cạnh trong tam giác)

9 tháng 2 2019

24 tháng 12 2020

CÂU TRẢ LỜI CHÍNH XÁC NÈ

a: BH<AB

CK<AC

=>BH+CK<AB+AC

b: BH<BD

CK<CD

=>BH+CD<BD+CD=BC

Xét ΔABC có AB<AC

mà HB,HC lần lượt là hình chiếu của AB,AC trên BC

nên HB<HC