muốn chứng minh 3 điểm thẳng hàng thì làm thk nào vậy chỉ mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách thứ nhất là chứng minh góc đó là góc bẹt
cách thứ 2 mình ko nhớ
- Sử dụng hai góc kề bù có ba điểm nằm trên hai cạnh là hai tia đối nhau.
- Ba điểm cùng thuộc một tia hoặc một một đường thẳng
- Trong ba đoạn thẳng nối hai trong ba điểm có một đoạn thẳng bằng tổng hai đoạn thẳng kia.
- Hai đoạn thẳng cùng đi qua hai trong ba điểm ấy cùng song song với đường thẳng thứ ba.
- Hai đường thẳng cùng đi qua hai trong ba điểm ấy cùng vuông góc với đường thẳng thứ ba.
- Đường thẳng cùng đi qua hai trong ba điểm ấy có chứa điểm thứ ba.
- Sử dụng tính chất đường phân giác của một góc, tính chất đường trung trực của đoạn thẳng, tính chất ba đường cao trong tam giác .
- Sử dụng tính chất hình bình hành.
- Sử dụng tính chất góc nội tiếp đường tròn.
- Sử dụng góc bằng nhau đối đỉnh
- Sử dụng trung điểm các cạnh bên, các đường chéo của hình thang thẳng hàng
- Chứng minh phản chứng
- Sử dụng diện tích tam giác tạo bởi ba điểm bằng 0
- Sử dụng sự đồng qui của các đường thẳng.
ba điểm thẳng hàng khi chúng cùng nằm trên 1 đường thẳng
góc có số đo bằng 90 độ thì gọi là góc vuông
tia phân giác của góc là tia nằm giữa 2 cạnh của góc và tạo với 2 cạnh ấy hai góc bằng nhau
còn chứng minh tam giác vuông thì mình ko biết .
k cho mik nhak
VD như: Tam giac ABC vuông tại A , đường phân giác BD . Kẻ AE vuông góc vs BD , AE cắt BC ở K
a) C/M tam giác ABK cân tại B
b) C/M DK vuông góc vs BC
c) Kẻ AH vuông góc BC .C/M AK là tia phân giác của góc HAC
d) Gọi I là giao điểm của AH và BD . C/M IK // AC.
BẠN LÀM CHO MK BÀI NÀY ĐC KO
đinh tuấn việt đúng đó bạn ta chứng minh hai cạnh này kéo dài mãi cũng ko cắt nhau dc thì //
a) Ta có BD = BA \(\Rightarrow\)tam giác ABD cân tại B
Gọi giao điểm của AD với BE là O
Xét tam giác ABO và tam giác DBO có :
AB = BD
\(\widehat{ABO}=\widehat{DBO}\)( BE là phân giác góc B )
Chung cạnh BO
\(\Rightarrow\) tam giác ABO = tam giác DBO ( c-g-c )
\(\Rightarrow\widehat{AOB}=\widehat{DOB}\)
Mà \(\widehat{AOB}+\widehat{BOD}=180^o\)( kề bù )
\(\Rightarrow AD\perp BE\)
b) Xét tam giác BAE và tam giác BDE có :
AB = BD
\(\widehat{ABE}=\widehat{DBE}\)
Chung BE
\(\Rightarrow\) tam giác BAE = tam giác BDE ( c-g-c )
\(\Rightarrow EA=ED\)
c) ta có tam giác AEB = tam giác DEB ( câu b )
\(\Rightarrow\widehat{EAB}=\widehat{EDB}=90^o\)
Mà \(\widehat{EDB}+\widehat{EDC}=180^o\)
\(\Rightarrow\widehat{EDC}=\widehat{EDB}=90^o\)
Xét tam giác AFE và tam giác DCE có :
\(\widehat{EAF}=\widehat{EDC}\left(=90^o\right)\)
AF = DC
AE = ED ( câu b )
\(\Rightarrow\)tam giác AFE = tam giác DCE ( c - g - c )
\(\Rightarrow EF=EC\)
d) Ta có AB = BD
AF = DC
\(\Rightarrow AB+AF=BD+DC\)
\(\Leftrightarrow BF=BC\)
\(\Rightarrow\)Tam giác BFC cân tại B
Mà BE là phân giác góc FBC ( là đỉnh tam giác cân FBC )
\(\Rightarrow\)BE là đường cao tam giác FBC
Lại có \(CA\perp BF\)
CA và BE cắt nhau tại E
\(\Rightarrow\)E là trực tâm tam giác FBC
Mà \(\widehat{EDC}=\widehat{EDB}=90^o\Rightarrow ED\perp BC\)
\(\Rightarrow\)D ; E ; F thẳng hàng
chọn 1 điểm
điểm đã chọn tạo với 19 điểm còn lại tạo thành 19 đường thẳng.
mà có 20 điểm nên số đường thẳng được tạo thành là 20.19( đường thẳng )
vì mỗi đường thẳng được tạo 2 lần nên số đường thẳng được tạo thành là 20.19/2=190 (đường thẳng )
vậy tạo thành được 190 đường thẳng.
bạn ơi mình chắc chắn đúng. cái này bạn học toán nâng cao lớp 6 phần hình học là có bài này.
chúc bạn học giỏi.
Số đường thẳng vẽ được :
20 . ( 20 - 1 ) : 2 = 190 ( đường thẳng )
đ/s : ....
Đây là những phương pháp chứng mình 3 điểm thẳng hàng trong chương trình hình học chương 2 có vị dụ hướng dẫn cụ thể.