Tìn nghiệm nguyên x,y của pt: \(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được
\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)
Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc
\(2y^2+x^2y+x+3x^2-3xy=0\)
\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)
Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x
Ta có \(\Delta=-8y^3-15y^2-6y+1\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)
mà y nguyên dương => y thuộc rỗng
=> Pt đã cho ko có nghiệm nguyên dương
Ta co :(x+y)^2=(x-1)(y-1)
X^2+2xy+y^2=xy-x-y+1
2x^2+2xy+2y^2+x+y-2=0
(x^2+2xy+y^2)+(x^2+2x+1)+(y^2+2y+1)=4
(x+y)^2+(x+1)^2+(y+1)^2=4
Do x;y€Z nen (x+y)^2;(x+1)^2;(y+1)^2 la cac so chinh phuong
Suy ra co 3 truong hop
°(x+y)^2=0;(x+1)^2=0;(y+1)^2=4
°(x+y)^2=0;(x+1)^2=4;(y+1)^2=0
°(x+y)^2=4;(x+1)^2=0;(y+1)^2=0
Sau do tu giai ra tim x;y
\(PT\Leftrightarrow xy\left(x+y-1\right)+\left(x+y-1\right)=1\)
\(\Leftrightarrow\left(x+y-1\right)\left(xy+1\right)=1\)
\(\Leftrightarrow\hept{\begin{cases}x+y-1=1\\xy+1=1\end{cases}hoac\hept{\begin{cases}x+y-1=-1\\xy+1=-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=2\\xy=0\end{cases}hoac\hept{\begin{cases}x+y=0\\xy=-2\end{cases}}}\)
Đến đây thì đơn giản rồi nhé :)))
Phương trình tương đương: \(\left(x+y\right)\left(x^2y^2+1\right)=xy+2\)
\(\Leftrightarrow x+y=\frac{xu+2}{x^2y^2+1}\)
\(\Rightarrow\left(xy+2\right)⋮\left(x^2y^2+1\right)\Rightarrow\left(x^2y^2-4\right)⋮\left(x^2y^2+1\right)\)
\(\Rightarrow\left(x^2y^2+1-5\right)⋮\left(x^2y^2+1\right)\Rightarrow5⋮\left(x^2y^2+1\right)\)
\(\Rightarrow x^2y^2+1\in\left\{1;5\right\}\Rightarrow x^2y^2\in\left\{0;4\right\}\Rightarrow xy\in\left\{-2;0;2\right\}\)
- \(xy=0\Rightarrow xy=2\Rightarrow\left(x;y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
- \(xy-2\Rightarrow x+y=0\Rightarrow y=-x\Rightarrow x^2=2\left(ktm\right)\)
- \(xy=2\Rightarrow x+y=\frac{4}{5}\left(ktm\right)\)
Vậy: \(\left(x,y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)
\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)
\(VP=\left(y^2+3y+1\right)^2-1\)
\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))
pt đã cho trở thành:
\(x^2=t^2-1\)
\(\Leftrightarrow t^2-x^2=1\)
\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)
Ta xét các TH:
\(t-x\) | 1 | -1 |
\(t+x\) | 1 | -1 |
\(t\) | 1 | -1 |
\(x\) | 0 |
0 |
Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)
Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).
Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)
khai triển và rút gọn 2 vế ta được x(x+1)=y4+2y3+3y2+2y
<=> x(x+1)=y2(y+1)2+2y(y+1)
<=> x2+x+1=(y2+y+1)2 (1)
nếu x>0 thì từ x2<x2+x+1<(x+1)2 => (1) không có nghiệm nguyên x>0
nếu x=0 hoặc x=-1 thì từ (1) => y2+y+1 = \(\pm\)1 \(\Leftrightarrow\hept{\begin{cases}y=0\\y=-1\end{cases}}\)
ta có nghiệm (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)
nếu x<-1 thì từ (x+1)2<x2+x+1<x2
=> (1) không có nghiệm nguyên x<-1
tóm lại phương trình đã cho có 4 nghiệm nguyên (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)
1.
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-2m\left(x+\dfrac{1}{x}\right)-1+2m=0\)
Đặt \(x+\dfrac{1}{x}=t\Rightarrow\left|t\right|\ge2\)
\(\Rightarrow t^2-1-2mt+2m=0\)
\(\Leftrightarrow\left(t-1\right)\left(t+1\right)-2m\left(t-1\right)=0\)
\(\Leftrightarrow\left(t-1\right)\left(t+1-2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\left(loại\right)\\t=2m-1\end{matrix}\right.\)
Pt có nghiệm \(\Leftrightarrow\left[{}\begin{matrix}2m-1\ge2\\2m-1\le-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge\dfrac{3}{2}\\m\le-\dfrac{1}{2}\end{matrix}\right.\)
2.
Cộng vế với vế: \(3\left|x\right|=3\Rightarrow\left|x\right|=1\)
\(\Rightarrow\left|y\right|=-1< 0\) (không thỏa mãn)
Vậy hệ pt vô nghiệm