Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được
\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)
Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc
\(2y^2+x^2y+x+3x^2-3xy=0\)
\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)
Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x
Ta có \(\Delta=-8y^3-15y^2-6y+1\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)
mà y nguyên dương => y thuộc rỗng
=> Pt đã cho ko có nghiệm nguyên dương
Ta co :(x+y)^2=(x-1)(y-1)
X^2+2xy+y^2=xy-x-y+1
2x^2+2xy+2y^2+x+y-2=0
(x^2+2xy+y^2)+(x^2+2x+1)+(y^2+2y+1)=4
(x+y)^2+(x+1)^2+(y+1)^2=4
Do x;y€Z nen (x+y)^2;(x+1)^2;(y+1)^2 la cac so chinh phuong
Suy ra co 3 truong hop
°(x+y)^2=0;(x+1)^2=0;(y+1)^2=4
°(x+y)^2=0;(x+1)^2=4;(y+1)^2=0
°(x+y)^2=4;(x+1)^2=0;(y+1)^2=0
Sau do tu giai ra tim x;y
\(PT\Leftrightarrow xy\left(x+y-1\right)+\left(x+y-1\right)=1\)
\(\Leftrightarrow\left(x+y-1\right)\left(xy+1\right)=1\)
\(\Leftrightarrow\hept{\begin{cases}x+y-1=1\\xy+1=1\end{cases}hoac\hept{\begin{cases}x+y-1=-1\\xy+1=-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=2\\xy=0\end{cases}hoac\hept{\begin{cases}x+y=0\\xy=-2\end{cases}}}\)
Đến đây thì đơn giản rồi nhé :)))
Phương trình tương đương: \(\left(x+y\right)\left(x^2y^2+1\right)=xy+2\)
\(\Leftrightarrow x+y=\frac{xu+2}{x^2y^2+1}\)
\(\Rightarrow\left(xy+2\right)⋮\left(x^2y^2+1\right)\Rightarrow\left(x^2y^2-4\right)⋮\left(x^2y^2+1\right)\)
\(\Rightarrow\left(x^2y^2+1-5\right)⋮\left(x^2y^2+1\right)\Rightarrow5⋮\left(x^2y^2+1\right)\)
\(\Rightarrow x^2y^2+1\in\left\{1;5\right\}\Rightarrow x^2y^2\in\left\{0;4\right\}\Rightarrow xy\in\left\{-2;0;2\right\}\)
- \(xy=0\Rightarrow xy=2\Rightarrow\left(x;y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
- \(xy-2\Rightarrow x+y=0\Rightarrow y=-x\Rightarrow x^2=2\left(ktm\right)\)
- \(xy=2\Rightarrow x+y=\frac{4}{5}\left(ktm\right)\)
Vậy: \(\left(x,y\right)\in\left\{\left(0;2\right);\left(2;0\right)\right\}\)
Câu 1:
\(3x^2+2xy+5y^2=45\)
\(\Leftrightarrow 2x^2+(x^2+2xy+y^2)+4y^2=45\)
\(\Leftrightarrow 2x^2+(x+y)^2+4y^2=45\)
\(\Leftrightarrow 4y^2=45-2x^2-(x+y)^2\leq 45\)
\(\Rightarrow y^2\leq \frac{45}{4}< 16\Rightarrow -4< y< 4\)
Vì \(y\in\mathbb{Z}\Rightarrow y\in\left\{-3;-2;-1;0;1;2;3\right\}\)
Thay từng giá trị của $y$ vào PT ban đầu, cuối cùng ta có:
$y=-3$ thì $x=0$ hoặc $x=2$
$y=3$ thì $x=0$ hoặc $x=-2$
Vậy.........
Câu 2: Mình nghĩ phải thêm điều kiện $x,y,z$ dương
Câu 3:
PT \(\Leftrightarrow (x-2008)^2=[(y-1)(y+2)][y(y+1)]\)
\(\Leftrightarrow (x-2008)^2=(y^2+y-2)(y^2+y)\)
\(\Leftrightarrow (x-2008)^2=(y^2+y)^2-2(y^2+y)=(y^2+y-1)^2-1\)
\(\Leftrightarrow (y^2+y-1-x+2008)(y^2+y-1+x-2008)=1\)
\(\Leftrightarrow (y^2+y-x+2007)(y^2+y+x-2009)=1\)
Đến đây ta xét các TH:
\(\left\{\begin{matrix} y^2+y-x+2007=1\\ y^2+y+x-2009=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=2008\\ y=1; y=-2\end{matrix}\right.\)
\(\left\{\begin{matrix} y^2+y-x+2007=-1\\ y^2+y+x-2009=-1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=2008\\ y=0; y=-1\end{matrix}\right.\)
Vậy........
đặt x2=a;x2+y2=b;x2+y2+z2=c
pt \(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
đến đó thì dễ rồi