\(3^{24}\)và \(2^{81}\)
Hãy so sánh hai lũy thừa trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Mà: \(125< 121\)
\(\Rightarrow121^{12}< 125^{12}\)
\(\Rightarrow11^{24}< 5^{36}\)
Vậy: ....
Có: 1030 = 103.10 = (103)10 = 100010
2100 = 210.10 = (210)10 = 102410
Vì 1000 < 1024 => 100010 < 102410 => 1030 < 2100
Ta có : \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì :\(1000^{10}< 1024^{10}\)
\(\Rightarrow10^{30}< 2^{100}\)
hay :\(A< B\)
2711=(33)11= 33.11=333
818= (34)8=34.8=332
Vì: 333 > 332 (33>32)
=> 2711 > 818
ta có :\(27^{11}=\left(3^3\right)^{11}=3^{33}\)
lại có :\(81^8=\left(3^4\right)^8=3^{32}\)
vì \(3^{33}>3^{32}\)=>\(27^{11}>81^8\)
536 và 1124
Ta có 1124 = ( 112 )24 = 12124
Ta thấy : 121 > 11
\(\Rightarrow\) 12124 > 1124
\(\Rightarrow\)536 > 1124
ủa sao mình thấy sai sai vì sao 11^24 lại bằng 11 mũ 2 tất cả mũ 24
\(27^{12}=\left(3^3\right)^{12}=3^{36}\)
có : \(36< 24\)
\(\Rightarrow3^{24}< 3^{36}\)
\(\Leftrightarrow3^{24}< 27^{12}\)
vậy \(3^{24}< 27^{12}\)
\(5^{36}\)= \(\left(5^3\right)^{12}\)= \(125^{12}\)
\(11^{24}\)= \(\left(11^2\right)^{12}\)= \(121^{12}\)
Vì 125 > 121
Nên \(5^{36}\)> \(11^{24}\)
a) Ta có 2711 = (33)11 = 333
818 = (34)8 = 332
Vì 32 < 33
=> 332 < 333
=> 818 < 2711
b) Ta có 6255 = (54)5 = 520
1257 = (53)7 = 521
Vì 20 < 21
<=> 520 < 521
=> 6255 < 1257
c) Ta có 536 = (53)12 = 12512
1124 = (112)12 = 12112
Vì 125 > 121
<=> 12512 > 12112
<=> 536 > 1124
a. 2711 và 818
Ta có :
818 = ( 27 ) 3 . 8 = 2724
Ta có : 2711 < 2724
=> 2711 < 818
Vậy 2711 < 818
b. 6255 và 1257
Ta có :
6255 = ( 125 )5 . 7 = 12535
Ta có : 12535 > 1257
=> 6255 > 1257
Vậy 6255 > 1257
c. 536 và 1124
Ta có :
536 = 53 . 12 = ( 53 )12 = 12512
1124 = 11 2 . 12 = ( 112 )12 = 2212
Ta có 12512 < 2212
=> 526 < 1124
Vậy 526 < 1124
Có 540 = 54.10 = (54)10 = 62510
Vì 625 > 620 => 62510 > 62010 => 540 > 62010
Ta có 5^40 = (5^4)^10= 625^10
Vì 625 > 620 nên 625^10>620^10
Vậy 5^40 > 620^10
Ta có :
\(2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
Vì \(8^8< 9^8\) nên \(2^{24}< 3^{16}\)
Vậy \(2^{24}< 3^{16}\)
Chúc bạn học tốt ~
\(2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8\)
Ta có \(8^8< 9^8\)nên \(3^{24}< 3^{16}\)
281>280=440>340>324
Vậy 281>324
Ta có:
\(2^{80}< 2^{81}\)
Lại có:
\(2^{80}=\left(2^{10}\right)^8=1024^8\)
\(3^{24}=\left(3^3\right)^8=27^8\)
Ta thấy:
\(1024^8< 27^8\Rightarrow2^{80}< 3^{24}\)
Mà: \(2^{80}< 2^{81}\Rightarrow2^{81}>3^{24}\)
Vậy: \(2^{81}>3^{24}\)