K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

Ta có công thức tìm số chẵn(số lẻ) trong 1 dãy số cách đều:(Số lớn nhất - số bé nhất) : khoảng cách + 1

2 số chẵn liên tiếp hơn kém hau 2 đơn vị

a)Hiệu của số chẵn cuối cùng và 1996 là:

 (50 -  1) x 2 = 98

Số chẵn cuối cùng là:

 1996 + 98 = 2094

b) Hiệu của 2004 và số chẵn đầu tiên là:

   (96 - 1) x 2 = 190

Số chẵn đầu tiên là:

   2004 - 190 = 1814

c) Ta thấy dãy số này có khoảng cách là 3 đơn vị

Số nhỏ nhất có 1 chữ số khác 1 : 3 dư 1 là: 4

    Dãy số đó có số số hạng là:

        (100 - 4) : 3 + 1 = 33 (số)

   Số hạng thứ 10 là:

   100 - (10 - 1) x 3)  = 73 (tính 10 - 1 trước rồi nhân với 3)

  Số hạng thứ 17 là:

  100 - (17 - 1) x 3) = 52

  Số hạng thứ 27 là:

   100 - (27 - 1) x 3) = 22

           Đ/s:...   

  

12 tháng 6 2017

a) Vì đây là dãy 50 số chẵn liên tiếp nên khoảng cách giữa mỗi số hạng là 2 đơn vị

Số cuối cùng là:

1996 + 2 x (50 - 1) = 2094

b) Vì đây là dãy 96 số chẵn liên tiếp nên khoảng cách giữa mỗi số hạng là 2 đơn vị

Số đầu tiên của dãy là:

2004 - 2 x (96 - 1) = 1814

26 tháng 8 2017

1)55=4+5+6+7+8+9+10+11

26 tháng 8 2017

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

15 tháng 8 2015

1/Mỗi dãy có số số nhà là:769:2=384,5

   Vì người ta đánh dãy thứ 1 đầu tiên nên họ đã đánh 384 nhà của dãy thứ 2

   Vậy nhà cuối cùng của dãy chẵn là: 384x2=768

2/Ta có:

   số thứ nhất: 2= 1x2

   số thứ hai  : 4=2x2

   Vậy số 1996 là số hạng thứ 1996:2=998 của dãy

3/ a.số các số có 2 chữ số chia hết cho 3 là:

                 (99-12):3 +1=30(số)

    b.Số các số có 2 chữ số chia cho 4 dư 1 là:

                 (97-13):4+1=22(số)

    c.Số chẵn đầu tiên là 0, vậy số chẵn thứ 100 là: 100x2-2=198

       Tổng của 100 số chẵn đầu tiên là: (198+0)x100:2=9900

    d.số lẻ lớn nhất nhưng nhỏ hơn 40 là: 39

       số lẻ nhỏ nhất nhưng lớn hơn 20 là:21

       Tổng của 10 số lẻ đó là: ( 39+21)x10:2=300

  

12 tháng 8 2016

the first two right post third but all they said was that total body

5 tháng 8 2017

5 số tiếp theo là : 4,7,2,4,7

có tất cả số nhóm (2,4,7) là:1995 : 3 = 665(nhóm)

vì ko dư số nào nên số thứ 1995 là số 7.

5 tháng 8 2017

                - Viết tiếp 5 số của dãy: 2 , 4 , 7 , 2 , 4 , 7 , 2 , 4 , 7 , … 

                - Ta thấy dãy số đã cho có đặc điểm: Viết lặp chu kỳ 2 , 4 , 7. Suy ra số hạng nào có chỉ số chia hết cho3 thì đó là số 7, nếu chỉ số chia cho 3 dư 1 thì đó là số 2 và chỉ số chia cho 3 dư 2 thì đó là số 4. Số hạng thứ 1995 là số 7 vì 1995 chia hết cho 3 (1+9+9+5 = 24 chia hết cho3)    

11 tháng 5 2019

Bài 1: Một bạn học sinh viết liên tiếp các số tự nhiên mà khi chia cho 3 thì dư 2 bát đầu từ số 5 thành dãy số. Viết đến số hạng thứ 100 thì phát hiện đã viết sai. Hỏi bạn đó đã viết sai số nào ?

                                                                   Bài giải

Các số chia cho 3 dư 2 bắt đầu từ 5 là : 5 ; 8 ; 11 ; 14 ; .......

Thứ tự các số được tính là : ( a - 2 ) : 3

Vậy số thứ 100 là :  ( a - 2 ) : 3 = 100

a - 2 = 300

a      = 302

Bài 1: Tính tổng: a, 6 + 8 + 10 +. .. + 1999. b, 11 + 13 + 15 +. .. + 147 + 150 c, 3 + 6 + 9 +. .. + 147 + 150. Bài 2: Có bao nhiêu số: a, Có 3 chữ số khi chia cho 5 dư 1? dư 2? b, Có 4 chữ số chia hết cho 3? c, Có 3 chữ số nhỏ hơn 500 mà chia hết cho 4? Bài 3: Khi đánh số thứ tự các dãy nhà trên một đường phố, người ta dùng các số lẻ liên tiếp 1, 3, 5, 7,. .. để đánh số dãy thứ nhất và các số chẵn liên tiếp...
Đọc tiếp

Bài 1: Tính tổng: a, 6 + 8 + 10 +. .. + 1999. b, 11 + 13 + 15 +. .. + 147 + 150 c, 3 + 6 + 9 +. .. + 147 + 150.

Bài 2: Có bao nhiêu số: a, Có 3 chữ số khi chia cho 5 dư 1? dư 2? b, Có 4 chữ số chia hết cho 3? c, Có 3 chữ số nhỏ hơn 500 mà chia hết cho 4? Bài 3: Khi đánh số thứ tự các dãy nhà trên một đường phố, người ta dùng các số lẻ liên tiếp 1, 3, 5, 7,. .. để đánh số dãy thứ nhất và các số chẵn liên tiếp 2, 4, 6, 8,. .. để đánh số dãy thứ hai. Hỏi nhà cuối cùng trong dãy chẵn của đường phố đó là số mấy, nếu khi đánh số dãy này người ta đã dùng 769 chữ cả thảy? Bài 4: Cho dãy các số chẵn liên tiếp 2, 4, 6, 8,. .. Hỏi số 1996 là số hạng thứ mấy của dãy này? Giải thích cách tìm. Bài 5: Tìm tổng của: a, Các số có hai chữ số chia hết cho 3; b, Các số có hai chữ số chia cho 4 dư 1; c, 100 số chẵn đầu tiên; d, 10 số lẻ khác nhau lớn hơn 20 và nhỏ hơn 40.

4
6 tháng 10 2021

Dãy a) với b) không có quy luật

c) 3 + 6 + 9 + ... + 147

Khoảng cách là : 3

Số số hạng là:

     ( 147 - 3 ) / 3 + 1 = 49 ( số hạng )

Tổng trên là:
     ( 147 + 3 ) * 49 / 2 = 3675

                   Đ/s: c) 3675

6 tháng 10 2021

a/số chia cho 5 dư 1 thì có tận cùng là 1 hoặc 6; vậy có số số chia cho 5 dư 1 là:

                             (996-101): 5 +1=180(số)                                                                số chia cho 5 dư 2 thì có tận cùng là 2 hoặc 7; vậy có số số chia cho 5 dư 2 là:

                             (997-102): 5+1=180(số)

b/Số số có 4 chữ số chia hết cho 3 là:

                             (9999-1002):3+1=3000(số)

c/Số số có 3 chữ số <500 mà chia hết cho 4 là:

                              (496-100):4+1=100(số)

Bài 1: Ba bạn Toán, Tuổi và Thơ có một số vở. Nếu lấy 40% số vở của Toán chia đều cho Tuổi và Thơ thì số vở của ba bạn bằng nhau. Nhưng nếu Toán bớt đi 5 quyển thì số vở của Toán bằng tổng số vở của Tuổi và Thơ. Hỏi mỗi bạn có bao nhiêu quyển vở?Bài 2:  Viết liên tiếp các số từ trái sang phải theo cách sau: Số đầu tiên là 1, số thứ hai là 2, số thứ ba là chữ số tận cùng...
Đọc tiếp

Bài 1: Ba bạn Toán, Tuổi và Thơ có một số vở. Nếu lấy 40% số vở của Toán chia đều cho Tuổi và Thơ thì số vở của ba bạn bằng nhau. Nhưng nếu Toán bớt đi 5 quyển thì số vở của Toán bằng tổng số vở của Tuổi và Thơ. Hỏi mỗi bạn có bao nhiêu quyển vở?

Bài 2:  Viết liên tiếp các số từ trái sang phải theo cách sau: Số đầu tiên là 1, số thứ hai là 2, số thứ ba là chữ số tận cùng của tổng số thứ nhất và số thứ hai, số thứ tư là chữ số tận cùng của tổng số thứ hai và số thứ ba. Cứ tiếp tục như thế ta được dãy các số như sau: 1235831459437...... 
Trong dãy trên có xuất hiện số 2005 hay không ?

Bài 3: Có 5 đội tham gia dự thi toán đồng đội. Tổng số điểm của cả 5 đội là 144 điểm và thật thú vị là cả 5 đội đều đạt một trong ba giải: nhất (30 điểm); nhì (29 điểm); ba (28 điểm).
Chứng minh số đội đạt giải ba hơn số đội đạt giải nhất đúng một đội.

Bài 4: 

Người ta cộng 5 số và chia cho 5 thì được 138. Nếu xếp các số theo thứ tự

lớn dần thì cộng 3 số đầu tiên và chia cho 3 sẽ được 127, cộng 3 số cuối và chia cho

3 sẽ được 148. Bạn có biết số đứng giữa theo thứ tự trên là số nào không ?

1
29 tháng 3 2016

CÓ PHẢI TRONG ĐỀ BÀI TẬP TOÁN BỒI DƯỠNG HSG LỚP 5 KHÔNG BẠN