Bài 3 : Cho tam giác ABC, góc A= \(^{60^O}\) . Phân giác BD, CE cắt tại O .CMR:
a. Tam giác DOE cân
b. BE+CE=BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy F \(\in\) BC sao cho OD là phân giác góc BOC
Dễ dàng tính được góc BOC=120o => góc BOF = góc COF = 60o
Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120o => góc DOC = góc EOB = 60o
Từ đó có
Mà BF+CF=BC => BE + CD = BC
Nếu có gì chưa hiểu thì bạn nhắn lại cho minh , cho mình tick đúng nha
Lấy F ∈ BC sao cho OD là phân giác góc BOC
Dễ dàng tính được góc BOC=120
o => góc BOF = góc COF = 60
o
Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120
o => góc DOC = góc EOB = 60
o
Từ đó có
Tam giác BEO = Tam giác BFO (g.c.g)
Tam giác CDO = Tam giác CFO (g.c.g)
=> OE = OF và OD = OF => OE = OD => Tam giác EOD cân tại O
=> BE = BF và CD = CF
Mà BF+CF=BC => BE + CD = BC
Lấy F thuộc BC sao cho OD là phân giác góc BOC
Dễ dàng tính được góc BOC=120 độ
=> góc BOF = góc COF = 60 do
Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120 do
=> góc DOC = góc EOB = 60 do
Từ đó có
Tam giác BEO = Tam giác BFO (g.c.g)
Tam giác CDO = Tam giác CFO (g.c.g)
=> OE = OF và OD = OF => OE = OD => Tam giác EOD cân tại O
=> BE = BF và CD = CF
Mà BF+CF=BC => BE + CD = BC
cho tam giác abc góc a = 60 . phân giác bd và ce cắt nhau tại o . cm tam giác ode cân , BE + CD = BC