K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Đặt \(\frac{a}{12}=\frac{b}{9}=\frac{c}{5}=k\Leftrightarrow a=12k;b=9k;c=5k\)

Do abc = 20

\(\Rightarrow12k.9k.5k=20\)

\(\Rightarrow540k^3=20\)

\(\Rightarrow k^3=\frac{1}{27}\Leftrightarrow k=\frac{1}{3}\)

\(\Rightarrow a=\frac{1}{3}.12=4;b=\frac{1}{3}.9=3;c=\frac{1}{3}.5=\frac{5}{3}\)

30 tháng 9 2015

a=120

b=50

c=90

bạn thử lại nhé!

7 tháng 8 2023

Bài 1:

a) \(\dfrac{9}{20}-\dfrac{8}{15}\times\dfrac{5}{12}\)

\(=\dfrac{9}{20}-\dfrac{2}{9}\)

\(=\dfrac{41}{180}\)

b) \(\dfrac{2}{3}\div\dfrac{4}{5}\div\dfrac{7}{12}\)

\(=\dfrac{2}{3}\times\dfrac{5}{4}\times\dfrac{12}{7}\)

\(=\dfrac{5}{6}\times\dfrac{12}{7}\)

\(=\dfrac{10}{7}\)

c) \(\dfrac{7}{9}\times\dfrac{1}{3}+\dfrac{7}{9}\times\dfrac{2}{3}\)

\(=\dfrac{7}{9}\times\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)

\(=\dfrac{7}{9}\times1\)

\(=\dfrac{7}{9}\)

 

7 tháng 8 2023

Bài 2:

a) \(2\times\left(x-1\right)=4026\)

\(\left(x-1\right)=4026\div2\)

\(x-1=2013\)

\(x=2014\)

Vậy: \(x=2014\)

b) \(x\times3,7+6,3\times x=320\)

\(x\times\left(3,7+6,3\right)=320\)

\(x\times10=320\)

\(x=320\div10\)

\(x=32\)

Vậy: \(x=32\)

c) \(0,25\times3< 3< 1,02\)

\(\Leftrightarrow0,75< 3< 1,02\) ( S )

=> \(0,75< 1,02< 3\)

28 tháng 10 2019

\(a,\frac{a}{12}=\frac{b}{9}=\frac{c}{5}\)

Đặt \(\frac{a}{12}=\frac{b}{9}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=12k\\b=9k\\c=5k\end{cases}}\)

Ta có \(abc=12k\cdot9k\cdot5k=20\)

\(\Rightarrow540k^3=20\)

\(\Rightarrow k^3=\frac{20}{540}=\frac{1}{27}\)

\(\Rightarrow k=\frac{1}{3}\)

Với \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}a=\frac{1}{3}\cdot12=4\\b=\frac{1}{3}\cdot9=3\\c=5\cdot\frac{1}{3}=\frac{5}{3}\end{cases}}\)

a) Đặt \(\frac{a}{12}=\frac{b}{9}=\frac{c}{5}=k\)

\(\rightarrow a=12k,b=9k,c=5k\)

Ta có: \(abc=20\)

\(\rightarrow12k\cdot9k\cdot5k=20\)

\(\rightarrow540\cdot k^3=20\rightarrow k^3=\frac{1}{27}\)

\(\rightarrow k^3=\left(\frac{1}{3}\right)^3\rightarrow k=\frac{1}{3}\)

\(a=12k\rightarrow a=12\cdot\frac{1}{3}=4\)

\(b=9k\rightarrow b=9\cdot\frac{1}{3}=3\)

\(c=5k\rightarrow c=5\cdot\frac{1}{3}=\frac{5}{3}\)

Vậy \(a=4,b=3,c=\frac{5}{3}\)

10 tháng 7 2017

\(\dfrac{a}{12}=\dfrac{b}{9}=\dfrac{c}{5}\)

\(\Rightarrow a=12k\)

\(\Rightarrow b=9k\)

\(\Rightarrow c=5k\)

\(\Rightarrow a.b.c=12k.9k.5k=20\)

\(\Rightarrow540.k^3=20\)

\(\Rightarrow k^3=\dfrac{1}{27}\)

\(\Rightarrow k=\dfrac{1}{3}\)

\(a=\dfrac{1}{3}.12=4\)

\(b=\dfrac{1}{3}.9=3\)

\(c=\dfrac{1}{3}.5=\dfrac{5}{3}\)

10 tháng 7 2017

Ta có : \(\dfrac{a}{12}\)=\(\dfrac{b}{9}\)=\(\dfrac{c}{5}\)=k

=> a= k.12

=>b=k.9

=> c= k.5

Mà a.b.c=20

=> k.12 .k.9.k.5 = 20

=> k3.540 =20

=> k3 = \(\dfrac{1}{27}\)

=> k=\(\dfrac{1}{3}\)

Vì a= k.12 => a= \(\dfrac{1}{3}\).12 => a = 4

b= k.9 => b= \(\dfrac{1}{3}\).9 => b= 3

c=k.5 => c=\(\dfrac{1}{3}\) .5 => c =\(\dfrac{5}{3}\)

Vậy ......................

2 tháng 8 2019

Đặt \(\frac{a}{12}=\frac{b}{9}=\frac{c}{5}=k\left(k\in Z\right)\)

\(\Rightarrow a=12k;b=9k;c=5k\)

\(\Rightarrow a.b.c=540k^3=20\)

\(\Rightarrow k^3=\frac{1}{27}\Rightarrow k=\frac{1}{3}\)

\(\Rightarrow a=4;b=3;c=\frac{5}{3}\)

2 tháng 8 2019

#)Giải :

Đặt \(\frac{a}{12}=\frac{b}{9}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=12k\\b=9k\\c=5k\end{cases}\Rightarrow a.b.c=12k.9k.5k=540k^3=20\Rightarrow k^3=\frac{1}{27}\Rightarrow k=\frac{1}{3}}\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{12}=\frac{1}{3}\\\frac{b}{9}=\frac{1}{3}\\\frac{c}{5}=\frac{1}{3}\end{cases}\Rightarrow\hept{\begin{cases}a=4\\b=3\\c=\frac{5}{3}\end{cases}}}\)

Vậy ...

30 tháng 3 2022
11/12x+3/4=-1/6
20 tháng 2 2024

a; - \(\dfrac{10}{13}\) + \(\dfrac{5}{17}\) - \(\dfrac{3}{13}\) + \(\dfrac{12}{17}\) - \(\dfrac{11}{20}\)

= - (\(\dfrac{10}{13}\) + \(\dfrac{3}{13}\)) + (\(\dfrac{5}{17}\) + \(\dfrac{12}{17}\)) - \(\dfrac{11}{20}\)

= - 1 + 1  - \(\dfrac{11}{20}\)

=   0 - \(\dfrac{11}{20}\)

= - \(\dfrac{11}{20}\)

b; \(\dfrac{3}{4}\) + \(\dfrac{-5}{6}\) - \(\dfrac{11}{-12}\)

\(\dfrac{9}{12}\) - \(\dfrac{10}{12}\) + \(\dfrac{11}{12}\)

\(\dfrac{10}{12}\)

\(\dfrac{5}{6}\)

c; [13.\(\dfrac{4}{9}\) + 2.\(\dfrac{1}{9}\)] - 3.\(\dfrac{4}{9}\)

= [\(\dfrac{52}{9}\) + \(\dfrac{2}{9}\)] - \(\dfrac{4}{3}\)

\(\dfrac{54}{9}\) - \(\dfrac{4}{3}\)

\(\dfrac{14}{3}\)