K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

\(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y-1-x-y\right)^2\)

\(=\left(-1\right)^2\)

\(=1\)

\(2x^3-18x=0\)

\(2x\left(x^2-9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-9=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)

19 tháng 7 2018

\(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y-1-x-y\right)^2=\left(-1\right)^2=1\)

Áp dụng hằng đẳng thức: \(a^2+2ab+b^2=\left(a+b\right)^2\)

\(2x^3-18x=0\Leftrightarrow2x\left(x^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\left\{-3;3\right\}\end{cases}}}\)

Vậy x = {-3;0;3}

Bài 2:

a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-14x=-4\)

hay \(x=\dfrac{2}{7}\)

b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)

\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)

\(\Leftrightarrow x^3=-8\)

hay x=-2

Bài 1: 

a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)

\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)

\(=xy\)

=1

b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)

\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)

\(=x^2-y^2\)

\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)

17 tháng 7 2021

\(\)áp dụng BĐT AM-GM(BÀi này ko có Max chỉ có Min)

\(=>\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{\dfrac{1}{xy}}=\dfrac{2}{\sqrt{xy}}\)

\(=>\dfrac{1}{2}\ge\dfrac{2}{\sqrt{xy}}=>\sqrt{xy}\ge4\)

\(=>S=\sqrt{x}+\sqrt{y}\ge2\sqrt{4}=4\)

dấu"=" xảy ra<=>x=y=4

9 tháng 11 2023

tại sao từ \(\sqrt{xy}\) >=4 lại ->\(\sqrt{x}\) +\(\sqrt{y}\) >=4 v ạ

2:

a: 5/x-y/3=1/6

=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)

=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)

=>30-2xy=x

=>x(2y+1)=30

=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}

=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}

b: x/6-2/y=1/30

=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)

=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)

=>5xy-60=y

=>y(5x-1)=60

=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)

=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}

12 tháng 7 2023

bài 1 ???

24 tháng 10 2017

mk ko bt 123

25 tháng 9 2021

Đặt x+y−z=a;x−y+z=b;−x+y+z=cx+y−z=a;x−y+z=b;−x+y+z=c thì a + b + c = x + y + z

A=(a+b+c)3−a3−b3−c3A=(a+b+c)3−a3−b3−c3

=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)

=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]

=(b+c)(3a2+3ab+3bc+3ca)=(b+c)(3a2+3ab+3bc+3ca)

=(b+c)(3a(a+b)+3c(a+b))=3(a+b)(b+c)(c+a)

Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=3x-2m+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)

Mặt khác: \(x^2+y^2=2m^2+2m+1=2\left(m^2+m+\dfrac{1}{2}\right)\)

                 \(=2\left(m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

 Dấu bằng xảy ra \(\Leftrightarrow m+\dfrac{1}{2}=0\Leftrightarrow m=-\dfrac{1}{2}\)

  Vậy ...