K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
14 tháng 12 2020

A B C D M E F

Xét tứ giác AFME có góc A=E=F = 90 độ nên AEMF là hình chữ nhật

nên AE=MF (1)

Xét tam giác MFC có góc F=90 độ , góc C=45 độ ( do ABC vuông tại A) do đó MFC cân tại F

do đó FM=FC   (2)

từ (1) và (2) ta có AE=FC.

Xét tam giác DCF và DAE có DC=DA, FC=AE và góc DCF=DAE=45 độ , do đó hai tam giác bằng nhau theo c.g.c

nên \(\widehat{FDC}=\widehat{ADE}\Rightarrow\widehat{ADE}+\widehat{ADF}=\widehat{FDC}+\widehat{ADF}=90^0\)

vậy góc EDF=90 độ

a: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó:ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó:ΔAEM=ΔAFM

Suy ra:ME=MF

hay ΔMEF cân tại M

c: Ta có: AE=AF

ME=MF

Do đó: AM là đường trung trực của FE

hay AM⊥FE

8 tháng 3 2022

a, Xét tam giác AMB và tam giác AMC có 

AM _ chung 

AB = AC

^MAB = ^MAC 

Vậy tam giác AMB = tam giác AMC (c.g.c) 

b, Xét tam giác AEM và tam giác AFM có 

AM _ chung 

^MAE = ^MAF 

Vậy tam giác AEM = tam giác AFM (ch-gn) 

=> AE = AF ( 2 cạnh tương ứng ) 

=> EM = FM ( 2 cạnh tương ứng ) 

Xét tam giác MEF có EM = FM 

Vậy tam giác MEF cân tại M

c, AE/AB = AF/AC => EF // BC 

mà tam giác ABC cân tại A có AM là phân giác 

đồng thời là đường cao 

=> AM vuông BC 

=> AM vuông EF 

8 tháng 3 2022

bạn vẽ hình cho mình xem với 

31 tháng 12 2021

a: Xét ΔAMB và ΔAMC có

AM chung

\(\widehat{BAM}=\widehat{CAM}\)

AB=AC

Do đó: ΔABM=ΔACM

30 tháng 4

☯có cái con cc