K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

a: \(2^{300}=8^{100}\)

\(3^{200}=9^{100}\)

mà 8<9

nên \(2^{300}< 3^{200}\)

b: \(3^{500}=243^{100}\)

\(7^{300}=343^{100}\)

mà 243<243

nên \(3^{500}< 7^{300}\)

29 tháng 9 2023

\(a) 3^{200}=(3^2)^{100}=9^{100}\\2^{300}=(2^3)^{100}=8^{100}\)

Vì \(9^{100}>8^{100}\) nên \(3^{200}>2^{300}\)

\(b) 5^{40}=(5^4)^{10}=625^{10}\\3^{50}=(3^5)^{10}=243^{10}\)

Vì \(625^{10}>243^{10}\) nên \(5^{40}>3^{50}\)

#\(Toru\)

29 tháng 9 2023

a> \(3^{200}\) và \(2^{300}\)

Ta có:\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)

          \(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)

Vì 9>8 nên \(9^{100}>8^{100}\)

\(\Rightarrow\)\(3^{200}>2^{300}\)

b> \(5^{40}\) và \(3^{50}\)

Ta có:\(5^{40}=5^{4.10}=\left(5^4\right)^{10}=625^{10}\)

         \(3^{50}=3^{5.10}=\left(3^5\right)^{10}=243^{10}\)

Vì 625 > 243 nên \(625^{10}>243^{10}\)

\(\Rightarrow\)\(5^{40}>3^{50}\)

19 tháng 8 2023

a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

b) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)

c) \(3^{500}=\left(3^5\right)^{100}=243^{100}\)

\(7^{300}=\left(7^3\right)^{100}=343^{100}>243^{100}\)

\(\Rightarrow3^{500}< 7^{300}\)

19 tháng 8 2023

Giải chi tiết giúp mình ạ~

18 tháng 5 2019

6 tháng 2 2017

2300 = (23)100 = 8100 và 3200 = (32)100 = 9100 nên 2300 < 3200;

3 tháng 12 2019

a ) 3 20 > 27 4 b ) 5 34 > 25 . 5 30 c ) 2 25 > 16 6 d ) 10 30 < 4 50

9 tháng 4 2019

Đáp án A

13 tháng 7 2023

a) \(2^x=16=2^4\Rightarrow x=4\)

b) \(x^3=27=3^3\Rightarrow x=3\)

c) \(x^{50}=x\Rightarrow x\left(x^{49}-1\right)=0\Rightarrow x=0\) hay \(x=1\)

d) \(\left(x-2\right)^2=16=4^2\Rightarrow x-2=4\) hay \(x-2=-4\)

\(\Rightarrow x=6\) hay \(x=-2\)

 

13 tháng 7 2023

a) \(2^{300}=2^{3.100}=8^{100}\)

\(3^{200}=3^{2.100}=9^{100}\)

vì \(8^{100}< 9^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

b) \(3^{500}=3^{5.100}=243^{100}\)

\(7^{300}=7^{3.100}=343^{100}\)

vì \(243^{100}< 343^{100}\)

\(\Rightarrow3^{500}< 7^{300}\)