(X+2)(x+3)(x+4)(x+5)-12
Phân tích thành nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình bổ sung nhé:
\(=\left(x+1\right)\left(x^4+x^3+x^2-x^3+1\right)\)
\(=\left(x+1\right)\left[x^2\left(x^2+x+1\right)-\left(x^3-1\right)\right]\)
\(=\left(x+1\right)\left[x^2\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\right]\)
\(=\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)
=x^3(x^2+x+1)+(x^2+x+1)
=(x^2+x+1)(x^3+1)
=(x^2+x+1)(x+1)(x^2-x+1)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
(x+2).(x+3)(x+4)(x+5)-24
=(x+2)(x+5)(x+3)(x+4)-24
=(x2+7x+10)(x2+7x+12)-24
=(x2+7x+11-1)(x2+7x+11+1)-24
Đặt x2+7x+11=a thì
=(a-1)(a+1)-24
=a2-1-24=a2-25=a2-52
=(a+5)(a-5)
=(x2+7x+16)(x2+7x+6)
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\\ =\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\\ =\left(x^2+7x+11\right)^2-1-24\\ =\left(x^2+7x+11\right)^2-25\\ =\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\\ =\left(x^2+7x+6\right)\left(x^2+7x+16\right)\\ =\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
( x+3) (x+2) (x+4) (x+5) -24
=(x+3)(x+4)(x+2)(x+5)-24
=(x2+7x+12)(x2+7x+10)-24
Đặt t=x2+7x+10 ta được:
(t+2)t-24
=t2+2t-24
=t2+4t-6t-24
=t.(t+4)-6.(t+4)
=(t+4)(t-6)
thay t=x2+7t+10 ta được:
(x2+7x+14)(x2+7+4)
Vậy ( x+3) (x+2) (x+4) (x+5) -24=(x2+7x+14)(x2+7x+4)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\\ =\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\\ =\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+11=y\)
\(\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\\ =\left(y+1\right)\left(y-1\right)-24\\ =y^2-1-24\\ =y^2-25\\ =\left(y-5\right)\left(y+5\right)\\ =\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\\ =\left(x^2+7x+6\right)\left(x^2+7x+16\right)\\ =\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(t=x^2+7x+10\) ta có:
\(=t\left(t+2\right)-24=t^2+2t-24\)
\(=t^2-4t+6t-24\)\(=t\left(t-4\right)+6\left(t-4\right)\)
\(=\left(t-4\right)\left(t+6\right)=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
(x+2)(x+3)(x+4)(x+5)-24
=(x^2+7x+10)(x^2+7x+12)-24
Đặt x^2+7x+10=a
a(a+2)-24
=a^2+2a-24
=(a-4)(a+6)
=(x^2+7x+6)(x^2+7x+16)
=(x+1)(x+6)(x^2+7x+16)
A = ( x + 2 ) ( x + 3 ) ( x + 4 ) ( x + 5 ) - 48
= ( x2 + 7x + 10 ) ( x2 + 7x + 12 ) - 48
Đặt x2 + 7x + 10 = t
=> A = t. ( t + 2 ) - 48
= t2 + 2t + 1 - 49
= ( t + 1 )2 - 72
= ( t + 1 - 7 ) ( t + 1 + 7 )
= ( t - 6 ) ( t + 8 )
Thay t = x2 + 7x + 10
=> A = ( x2 + 7x + 4 )( x2 + 7x + 18 )
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-12\)
\(=\left(x+2\right)\left(x+5\right)\left(x+4\right)\left(x+3\right)-12\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-12\)
Đặt \(x^2+7x+10=t\)
\(=t\left(t+2\right)-12\)
\(=t^2+2t-12\)
Làm tiếp nha