K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-12\)

\(=\left(x+2\right)\left(x+5\right)\left(x+4\right)\left(x+3\right)-12\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-12\)

Đặt \(x^2+7x+10=t\)

\(=t\left(t+2\right)-12\)

\(=t^2+2t-12\)

Làm tiếp nha

10 tháng 9 2018

1/(x+2)(x+3)(x+4)(x+5)-24

=(x+2)(x+5)(x+3)(x+4)

=(x+2)(x-2+7)(x+3)(x-3+7)

=[(x+2)(x-2)+7x+14][(x+3)(x-3)+7x+21]

=(x2-4+7x+14)(x2-9+7x+21)

=(x2+10+7x)(x2+12+7x)

2/(x2+x)2+4(x2+x)-12

=(x2+x)2+4(x2+x)+22-16

=(x2+x+2)2-42

=(x2+x+2+4)(x2+x+2-4)

=(x2+x+6)(x2+x-2)

3/(x2+x+1)(x2+x+2)-12

=(x2+x+1)(x2+x+-1+3)-12

=(x2+x+1)(x2+x+-1)+3(x2+x+1)-12

=(x2+x)-1+3(x2+x)+3-12

=(x2+x)(x2+x+3)-10

làm đến đây thì mk bí, bạn giúp suy nghĩ nốt nha

4/nó là nhân tử sẵn rồi mà


 

\(3/\)

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

\(=\left(x^2+x+1\right)\left(x^2+x+1+1\right)-12\)

\(=\left(x^2+x+1\right)^2+x^2+x+1-12\)

\(=\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-3\left(x^2+x+1\right)-12\)

\(=\left(x^2+x+1\right)\left(x^2+x+1+4\right)-3\left(x^2+x+1+4\right)\)

\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

14 tháng 11 2019

a) đề thế này\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)

Đặt \(x^2+7x+11=t\)vào (1) ta được:

\(\left(t-1\right)\left(t+1\right)-24\)

\(=t^2-1-24\)

\(=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)Thay \(t=x^2+7x+11\)ta được:
\(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

b) Phân tích sẵn rồi còn phân tích gì nưa=))

14 tháng 11 2019

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)( Làm đề theo Lê Tài Bảo Châu )

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left[\left(x^2+7x+11\right)-1\right]\left[\left(x^2+7x+11\right)+1\right]-24\)

\(=\left(x^2+7x+11\right)^2-1-24\)

\(=\left(x^2+7x+11\right)^2-25\)

\(=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

5 tháng 7 2019

#)Giải :

\(x^3-2x-4\)

\(=x^3+2x^2-2x^2+2x-4x-4\)

\(=x^3+2x^2+2x-2x^2-4x-4\)

\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

\(x^4+2x^3+5x^2+4x-12\)

\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)

\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

5 tháng 7 2019

Câu 1.

Đoán được nghiệm là 2.Ta giải như sau:

\(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

1 tháng 11 2015

\(x^3-x^2-8x+12\)

\(=x^3+3x^2-4x^2-12x+4x+12\)

\(=x^2\left(x+3\right)-4x\left(x+3\right)+4\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-4x+4\right)\)

\(=\left(x+3\right)\left(x-2\right)^2\)

DD
7 tháng 7 2021

\(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)-3x^2\)

\(=4\left[\left(x+5\right)\left(x+12\right)\right]\left[\left(x+6\right)\left(x+10\right)\right]-3x^2\)

\(=4\left(x^2+17x+60\right)\left(x^2+16x+60\right)-3x^2\)

\(=\left(2x^2+34x+120\right)\left(2x^2+32x+60\right)-3x^2\)

\(=\left(2x^2+33x+120\right)^2-x^2-3x^2\)

\(=\left(2x^2+33x+120-2x\right)\left(2x^2+33x+120+2x\right)\)

\(=\left(2x+15\right)\left(x+8\right)\left(2x^2+35x+120\right)\)

10 tháng 7 2015

\(4\left(x+5\right)\left(x+12\right)\left(x+6\right)\left(x+10\right)-3x^2\)

\(=2\left(x^2+60+17x\right).2\left(x^2+60+16x\right)-3x^2\)

\(=\left(2x^2+120+33x+x\right)\left(2x^2+120+33x-x\right)-3x^2\)

\(=\left(2x^2+120+33x\right)^2-x^2-3x^2\)

\(=\left(2x^2+120+33x\right)^2-4x^2\)

\(=\left(2x^2+120+33x+2x\right)\left(2x^2+120+33x-2x\right)\)

\(=\left(2x^2+35x+120\right)\left(2x^2+31x+120\right)\)

\(=\left(2x^2+35x+120\right)\left(x+8\right)\left(2x+15\right)\)