Cho x,y>0 thỏa mãn
x^2015+y^2015=x^2016+y^2016=x^2017+y^2017
C/m: 1/x^2018+1/y^2018=1/x^2019+1/y^2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x+2y+3x=0\Leftrightarrow x=-\left(2y+3z\right)\)
Lại có: \(2xy+6yz+3xz=0\Leftrightarrow x\left(2y+3z\right)+6yz=0\)
\(\Leftrightarrow-\left(2y+3z\right)\left(2y+3z\right)+6yz=0\Leftrightarrow-\left(2y+3z\right)^2+6yz=0\)
\(\Leftrightarrow\left(2y+3z\right)^2-6yz=0\Leftrightarrow4y^2+12yz+9z^2-6yz=0\)
\(\Leftrightarrow4y^2+6yz+9z^2=0\Leftrightarrow\left(2y+\dfrac{3z}{2}\right)^2+\dfrac{27z^2}{4}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2y+\dfrac{3z}{2}\right)^2=0\\\dfrac{27z^2}{4}=0\end{matrix}\right.\) \(\Rightarrow y=z=0\Rightarrow x=0\)
\(\Rightarrow S=\dfrac{\left(-1\right)^{2019}-1^{2017}+\left(-1\right)^{2015}}{1^{2018}+2.0^{2016}+0^{2014}+2}=\dfrac{-1-1+-1}{1+0+0+2}=\dfrac{-3}{3}=-1\)
Vì \(x^{2015}+y^{2015}=x^{2016}+y^{2016}=x^{2017}+y^{2017}\)
\(\Rightarrow x=y=1\) hoặc \(x=y=0\)
Với \(x=y=1\)
\(S=2018\left(1^{2018}+1^{2018}\right)\)
\(S=2018.2\)
\(S=4036\)
Với \(x=y=0\)
\(S=2018\left(0^{2018}+0^{2018}\right)\)
\(S=0\)
Lời giải:
Từ điều kiện đề bài suy ra:
\(\left\{\begin{matrix} x^{2016}+y^{2016}-x^{2017}-y^{2017}=0\\ x^{2017}+y^{2017}-x^{2018}-y^{2018}=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x^{2016}(1-x)+y^{2016}(1-y)=0\\ x^{2017}(1-x)+y^{2017}(1-y)=0\end{matrix}\right.\)
\(\Rightarrow x^{2016}(1-x)(1-x)+y^{2016}(1-y)(1-y)=0\) (trử theo vế)
\(\Leftrightarrow x^{2016}(1-x)^2+y^{2016}(1-y)^2=0\)
Dễ thấy \(x^{2016}(1-x)^2; y^{2016}(1-y)^2\geq 0\) nên để tổng của chúng bằng $0$ thì:
\(x^{2016}(1-x)^2=y^{2016}(1-y)^2=0\)
\(\Rightarrow (x,y)=(0,1), (0,0), (1,1)\) và hoán vị của nó
Thử lại vào đk ban đầu thấy thỏa mãn
Do đó: \(A=x^{2019}+y^{2019}\in\left\{0; 1;2\right\}\)
Vì \(x^{2016}+y^{2016}=x^{2017}+y^{2017}=x^{2018}+y^{2018}\left(x,y\ge0\right)\)
\(\Rightarrow x=y=1\)
\(\Rightarrow A=1^{2019}+1^{2019}\)
\(\Rightarrow A=2\)