K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

   \(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

                \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

                \(=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

                \(=\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

                 \(=\frac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow A=\frac{\left(n+1\right)\left(n+2\right)-2}{4\left(n+1\right)\left(n+2\right)}\)

TK nha!!