TÍM GTNN :
a) M = \(x^2-6x+2018\)
b) N =\(x^2-x \)
c) P = \((x-1)(x+3)\)
còn 1 tiếng nữa mình đi học giải cho nha ,
CỐ LÊN !!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a :
\(M=x^2-6x+2018\)
\(=\left(x^2-6x+9\right)+2009\)
\(=\left(x-3\right)^2+2009\ge2009\)
Vậy \(MIN_M=2009\) . Dấu \("="\) xảy ra khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)
Câu b :
\(N=x^2-x\)
\(=\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{1}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Vậy \(MIN_N=-\dfrac{1}{4}\) . Dấu \("="\) xảy ra khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)
Câu c :
\(P=\left(x-1\right)\left(x+3\right)\)
\(=x^2+2x-3\)
\(=\left(x^2+2x+1\right)-4\)
\(=\left(x+1\right)^2-4\ge-4\)
Vậy \(MIN_P=-4\) . Dấu \("="\) xảy ra khi \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html
\(1+2+3+...+x=500500\)
\(\Rightarrow\frac{x.\left(x+1\right)}{2}=500500\)
\(\Rightarrow x.\left(x+1\right)=1001000\)
\(\Rightarrow1000.1001\)
..
Bài 2:
7(x-1)+2x(1-x)=0
=>7(x-1)-2x(x-1)=0
=>(x-1)*(7-2x)=0
=>x=1 hoặc x=7/2
Bài 1 :
a ) \(A=3x^2-5x+2000\)
\(A=3\left(x^2-\dfrac{5}{3}x+\dfrac{2000}{3}\right)\)
\(A=3\left[\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)+\dfrac{23975}{36}\right]\)
\(A=3\left[\left(x-\dfrac{5}{6}\right)^2+\dfrac{23975}{36}\right]\)
Vì : \(\left(x-\dfrac{5}{6}\right)^2\ge0\Rightarrow\left(x-\dfrac{5}{6}\right)^2+\dfrac{23975}{36}\ge\dfrac{23975}{35}\Rightarrow3\left[\left(x-\dfrac{5}{6}\right)^2+\dfrac{23975}{36}\right]\ge\dfrac{23975}{12}\)
Vậy GTNN của A là \(\dfrac{23975}{12}\) khi \(\left(x-\dfrac{5}{6}\right)^2=0\Rightarrow x=\dfrac{5}{6}\)
b ) \(B=-2x^2+6x+2018\)
\(B=-2\left(x^2-3x-1009\right)\)
\(B=-2\left[\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{4045}{4}\right]\)
\(B=-2\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{4045}{4}\right]\le\dfrac{4045}{2}\)
Vậy GTLN của B là \(\dfrac{4045}{2}\) khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Chúc bạn học tốt !!
2)
\(x^9-x^7+x^6-x^5-x^4+x^3-x^2+1\)
\(=x^7\left(x^2-1\right)+x^4\left(x^2-1\right)+x^3\left(x^2-1\right)-1\left(x^2-1\right)\)
\(=\left(x^7+x^4+x^3-1\right)\left(x-1\right)\left(x+1\right)\)
\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)
\(=\left(x^2-1\right)\left(x^2-9\right)+15\)
\(=\left(x^2-5+4\right)\left(x^2-5-4\right)+15\)
\(=\left(x^2-5\right)^2-16+15=\left(x^2-5\right)^2-1\)
\(=\left(x^2-5+1\right)\left(x^2-5-1\right)=\left(x^2-4\right)\left(x^2-6\right)=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)
\(x^7+x^5+1\)
\(=x^7-x^6+x^5-x^3+x^2+x^6-x^5+x^4-x^2+x+x^5-x^4+x^3-x+1\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
b. \(\left(2x+1\right)+\left(4x+3\right)+\left(6x+5\right)+...+\left(100x+99\right)=7600\)
\(\rightarrow\left(2x+4x+6x+...+100x\right)+\left(1+3+5+...+99\right)=7600\)
\(\rightarrow\frac{\left(2x+100x\right).50}{2}+\frac{\left(1+99\right).50}{2}=7600\)
\(\rightarrow51x.50+50.50=7600\)
\(\rightarrow51x.50+2500=7600\)
\(\rightarrow51x.50=7600-2500\)
\(\rightarrow51x.50=5100\)
\(\rightarrow50x=100\)
\(\rightarrow x=\frac{100}{50}=2\)
Vậy x = 2
a) \(M=x^2-6x+2018=x^2-2.x.3+9+2009\)
\(=\left(x-3\right)^2+2009\)\(\ge2009\)(Do \(\left(x-3\right)^2\ge0\))
\(\Rightarrow Min_M=2009\). Đẳng thức xảy ra <=> x=3.
b) \(N=x^2-x=x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(\Rightarrow N\ge-\frac{1}{4}\) ( Do \(\left(x-\frac{1}{2}\right)^2\ge0\)) \(\Rightarrow Min_N=-\frac{1}{4}\)
Đẳng thức xảy ra <=> \(x=\frac{1}{2}\).
c) \(P=\left(x-1\right)\left(x+3\right)=x^2+2x-3=x^2+2x.1+1-4\)
\(=\left(x+1\right)^2-4\ge-4\)\(\Rightarrow Min_P=-4\)
Đẳng thức xảy ra <=> \(x=-1\).
a, M=x^2 - 6x + 9 +2009
= (x-3)^2 + 2009
vì (x-3)^2 > 0 với mọi x
=> (x-3)^2 +2009 lớn hơn hoặc bằng 2009
vậy GTNN của M=2009 khi và chỉ khi x-3=0hay x=3