K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

a) Ta có D đối xứng vs a qua O (gt)

=> O là trung điểm của AD

Xét tứ giác ABCD có

BC cắt AD tại O

Mặt khác ta có O là trung điểm của BC

O là trung điểm của AD

nên tứ giác ABCD là hình bình hành

Xét hình bình hành ABCD có góc A = 900

=> Hình bình hànhABCD là hình chữ nhật

b, Xét tam giác AED có

AH = HE

AO = DO

=> HO là đường trung bình của tam giác

=> HO // ED

=> góc H bằng goc E vì đồng vị

Mà AH vuông góc vs BC

=> góc H = 90o

=> E bằng 90o

=> AE vuông góc vs ED

Xét tam giác AED c0s E bằng 90 độ nên tam giác ADE vuông

c,Đợi tí mình giải tiếp nhé

27 tháng 10 2019

a) Ta có: A và D đối xứng với nhau qua O(gt)

⇒O là trung điểm của AD

Xét tứ giác ABDC có:

O là trung điểm của đường chéo BC(gt)

O là trung điểm của đường chéo AD(cmt)

\(BC\cap AD=\left\{O\right\}\)

Do đó: ABDC là hình bình hành(dấu hiệu nhận biết hình bình hành)

\(\widehat{CAB}=90\)độ(ΔCAB cân tại A)

nên ABDC là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

b)* chứng minh ΔAED vuông

Kẻ EO

Xét ΔOHA (\(\widehat{OHA}=90\) độ) và ΔOHE (\(\widehat{OHE}=90\) độ) có

OH là cạnh chung

HA=HE(gt)

Do đó: ΔOHA=ΔOHE(hai cạnh góc vuông)

⇒OA=OE(hai cạnh tương ứng)

\(OA=\frac{AD}{2}\)(do O là trung điểm của AD)

nên \(OE=\frac{AD}{2}\)

Xét ΔAED có:

OE là đường trung tuyến ứng với cạnh AD (do O là trung điểm của AD)

\(OE=\frac{AD}{2}\)(cmt)

nên ΔAED vuông tại E(định lí 2 về từ hình chữ nhật áp dụng vào tam giác vuông)

* chứng minh CE⊥BE

Ta có: AO là đường trung tuyến ứng với cạnh huyền BC của ΔCAB vuông tại A(do O là trung điểm của BC)

\(AO=\frac{BC}{2}\)(định lí 1 về từ hình chữ nhật áp dụng vào tam giác vuông)

mà AO=OE(cmt)

nên \(EO=\frac{BC}{2}\)

Xét ΔCEB có:

EO là đường trung tuyến ứng với cạnh BC(do O là trung điểm của BC)

\(EO=\frac{BC}{2}\)(cmt)

nên ΔCEB vuông tại E(định lí 2 về từ hình chữ nhật áp dụng vào tam giác vuông)

hay \(\widehat{CEB}=90\) độ

⇒CE⊥BE(đpcm)

a: Xét ΔADI vuông tại I và ΔAHI vuông tạiI có

AI chung

DI=HI

Do đó: ΔADI=ΔAHI

b: Xét ΔAHB và ΔADB có

AH=AD
góc HAB=góc DAB

AB chung

Do đó: ΔAHB=ΔADB

Suy ra: góc AHB=góc DHB=90 độ

hay AD vuông góc với BD

c: \(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)

22 tháng 10 2019

giup mik i

moi nguoi

please

13 tháng 4 2016

a) Áp dụng định lí Pi - ta - go, ta có:

102 - 52 = 75 => AC = \(\sqrt{75}\)

Còn mấy phần kia mình hơi vội nên chưa lm đc thông cảm nhé

a: AC=12cm

Xét ΔABC có AB<AC<BC

nên góc C<góc B<góc A

b: Xét ΔBCD có

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBD cân tại C

c: Xét ΔCBD có

CA,BE là đường trung tuyến

CA cắt BE tại I

Do đó: DI đi qua trung điểm của BC

13 tháng 12 2022

1: Xét tứ giác AQDP có

góc AQD=góc APD=góc PAQ=90 độ

nên AQDP là hình chữ nhật

2: Vì AQDP là hình chữ nhật

nên AD cắt QP tại trung điểm của mỗi đường

=>K là trung điểm của AD

ΔDHA vuông tại H

mà HK là trung tuyến

nên HK=AD/2