TÌM \(x\in N:\)
a, \(\overline{2x78}\)\(⋮13\)
b, \(\overline{4x77}\)\(⋮13\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy 2700 là có 2 số 0 thì phải nhân cho 100
=> ( ab + 13) = 100 => ab = 87
Vậy ta tìm được a=8 và b=7 thỏa mãn điều kiện a-b =1
=> 100 x cd = 2700 => cd= \(\frac{2700}{100}\)= 27
Vậy ta tìm được c=2 và d=7
Vậy a=8, b=7 ,c =2 và d=7
Còn ( ba + 13) x cd thì a=3, b= 2, c= 7 và d=5
=>2078+100x chia hết cho 17
=>100x chia 17 dư 13
=>x=2
a, Đặt: \(S=137+\overline{3x}=137+30+x=12.13+\left(11+x\right)\)
Để: \(S\)chia hết cho \(13\Leftrightarrow11+x\) chia hết cho \(13\)
\(\Rightarrow x=2\)
b, Đặt: \(Q=\overline{137x137x}=10^6.13+\overline{7x}.10^4+13.10^2+\overline{7x}\)
\(=13\left(10^6+10^2\right)+\overline{7x}.10001\)
Lại có: \(10001\)không chia hết cho \(13\)
Để: \(Q\) chia hết cho \(13\Leftrightarrow\overline{7x}\) chia hết cho \(13\)
\(\Rightarrow x=8\)
Ta có
\(x^{13}=x^{12}\)
\(\Rightarrow x^{13}-x^{12}=0\)
\(\Rightarrow x^{12}\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^{12}=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
a, x=6
b, x=2
a) x = 6
b) x = 2