Giải pt
400/x=100/x + 300/x+10 + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
400/x = 100/x + 300/x + 10 + 1
(=) 400/x = 100/x + 300/x + 10x/x + x/x = 0
(=) 400/x - 100/x - 300/x - 10x/x - x/x = 0
(=) (400 - 100 - 300 - 10x - x )/x = 0
(=) -11x/x = 0
(=) 11x/x = 0
=) 11x = 0
(=) x=0
x phải khác 0 thì mới thỏa măn ĐKXĐ của phương trình.
Vậy phương trình trên vô nghiệm
Ta có: \(\left\{{}\begin{matrix}x-y=10\\\dfrac{300}{y}-\dfrac{300}{x}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\\dfrac{300}{y}-\dfrac{300}{10+y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\\dfrac{300\left(y+10\right)}{y\left(y+10\right)}-\dfrac{300y}{y\left(y+10\right)}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\300y+3000-300y=y\left(y+10\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\y^2+10y-3000=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\y^2+10y+25-3025=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\\left(y+5\right)^2=3025\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y+10\\x=y+10\end{matrix}\right.\\\left[{}\begin{matrix}y+5=55\\y+5=-55\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=50+10=60\\x=-60+10=-50\end{matrix}\right.\\\left[{}\begin{matrix}y=50\\y=-60\end{matrix}\right.\end{matrix}\right.\)
Vậy: Hệ phương trình có hai cặp nghiệm là (x,y)\(\in\){(-50;-60);(60;50)}
b) 200 x 4 = .800..... 300 x 2 = ..600....
200 x 2 = .400..... 300 x 3 = ...900...
400 x 2 = ...800... 500 x 1 = ..500....
100 x 4 = ..400.... 100 x 3 = .300.....
Bài 1:tìm x thuộc Z
a)x.(x-1)=0
\(\Leftrightarrow\left[\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy: \(x=0;1\)
b)(x-3).(x+4)=0
\(\Leftrightarrow\left[\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
Vậy: \(x=3;-4\)
c)(2x-4).(x+2)=0
\(\Leftrightarrow2\left(x-2\right).\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x=2;-2\)
d)(x+1)^2.(x-2)^2=0
\(\Leftrightarrow\left[\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy: \(x=-1;2\)
e) x(x+1).(x+2)^2.(x+3)^3=0
\(\Leftrightarrow\left[\begin{matrix}x=0\\x+1=0\\x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=-1\\x=-2\\x=-3\end{matrix}\right.\)
Vậy: \(x=0;-1;-2;-3\)
f)(x-9)^5.(x-5)^8=0
\(\Leftrightarrow\left[\begin{matrix}x-9=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=9\\x=5\end{matrix}\right.\)
Vậy: \(x=9;5\)
g)x(x+100)^10.(x+2000)^20.(x+300)^300=0
\(\Leftrightarrow\left[\begin{matrix}x=0\\x+100=0\\x+200=0\\x+300=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=-100\\x=-200\\x=-300\end{matrix}\right.\)
Vậy: \(x=0;-100;-200;-300\)
h)(x-2)^2=0
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy: \(x=2\)
`100/x-100/(x+10)=1/2`
`<=>(100x+1000-100x)/(x^2+10x)=1/2`
`<=>1000/(x^2+10x)=1/2`
`<=>x^2+10x=2000`
`<=>x^2+10x-2000=0`
`Delta'=25+2000=2025`
`<=>x_1=40,x_2=-50`
Vậy `S={40,-50}`
100x−100x+10=12100x-100x+10=12
⇔100x+1000−100xx2+10x=12⇔100x+1000-100xx2+10x=12
⇔1000x2+10x=12⇔1000x2+10x=12
⇔x2+10x=2000⇔x2+10x=2000
⇔x2+10x−2000=0⇔x2+10x-2000=0
Δ'=25+2000=2025Δ′=25+2000=2025
⇔x1=40,x2=−50⇔x1=40,x2=-50
-> S={40,−50}
\(\frac{400}{x}=\frac{100}{x}+\frac{300}{x}+10+\)\(1\)
<=> \(\frac{400-100-300}{x}=11\)
<=> \(\frac{0}{x}=11\)