Tìm x biết : a) (x+2) .(x-3) < 0
b) (3-2x) .(x+2) > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(2-x\right)\left(x+3\right)>0\Leftrightarrow\left(x-2\right)\left(x+3\right)< 0\)
Vì \(x+3>x-2\)
nên \(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Leftrightarrow-3< x< 2}\)
c, \(\left(5-2x\right)\left(x+4\right)>0\)
TH1 : \(\hept{\begin{cases}5-2x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{2}\\x>-4\end{cases}}\Leftrightarrow-4< x< \frac{5}{2}\)
TH2 : \(\hept{\begin{cases}5-2x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{2}\\x< -4\end{cases}}\)( vô lí )
bạn làm tương tự nhé
a) (x+1)(3-x)>0
TH1: \(\begin{cases}x+1>0\\3-x>0\end{cases}\)<=> -1<x<3
TH2: \(\begin{cases}x+1< 0\\3-x< 0\end{cases}\) hệ này vô nghiệm
vậy giá trị x thỏa mãn là : -1<x<3
câu b,c cũng tưng tự
a. \(\left(x+1\right)\left(3-x\right)>0\)
TH1 : x+1>0;3-x>0
=> x>-1;x<3
=>-1<x<3
TH2 : x+1<0;3-x<0
=>x<-1;x>3
=> vô lý
a) \(\left(x+2\right)\left(x-3\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< -2\\x>3\end{cases}}\) (loại)
Vậy \(-2< x< 3\)
b) \(\left(2x-5\right)\left(x+3\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}2x-5>0\\x+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}2x-5< 0\\x+3< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{5}{2}\\x>-3\end{cases}}\) hoặc \(\hept{\begin{cases}x< \frac{5}{2}\\x< -3\end{cases}}\)
Vậy \(x>\frac{5}{2}\) hoặc x < -3
a) \(\left(x-3\right)\left(x=2\right)>0\)
hay \(\left(x-3\right).2>0\)
mà \(2>0\)luôn đúng
\(\Rightarrow x-3>0\)
\(\Rightarrow x>3\)
vậy \(x>3\)
b) \(\left(2x-4\right)\left(x+4\right)< 0\)
\(2\left(x-4\right)\left(x+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4< 0\\x+4>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-4>0\\x+4< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 4\\x>-4\end{cases}}\)hoặc \(\hept{\begin{cases}x>4\\x< -4\end{cases}}\)
hợp nghiệm lại ta được \(\orbr{\begin{cases}-4< x< 4\\x\in\varnothing\end{cases}}\)
vậy \(-4< x< 4\)là giá trị cần tìm
a) \(x\left(x-3\right)>0\)
\(\Leftrightarrow x\) và \(x-3\) cùng dấu
\(TH:\hept{\begin{cases}x>0\\x-3>0\end{cases}}\Rightarrow x>3\)
\(TH:\hept{\begin{cases}x< 0\\x-3< 0\end{cases}}\Leftrightarrow x< 0\)
b) \(x\left(x+2\right)>0\)
\(\Leftrightarrow x\) và \(x+2\) cùng dấu
\(TH:\hept{\begin{cases}x>0\\x+2>0\end{cases}}\Rightarrow x>0\)
\(TH:\hept{\begin{cases}x< 0\\x+2< 0\end{cases}}\Leftrightarrow x< -2\)
c) \(\left(x+5\right)2x>0\)
\(\Leftrightarrow2x^2+10x>0\)
\(\Leftrightarrow x\inℕ^∗\)
d) \(x\left(x+3\right)< 0\)
\(\Leftrightarrow x\) và \(x+3\) trái dấu
Mà x < x + 3 nên \(\hept{\begin{cases}x< 0\\x+3>0\end{cases}}\Rightarrow-3< x< 0\)
Vậy \(x\in\left\{-2;-1\right\}\)