K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

a, \(\left(2-x\right)\left(x+3\right)>0\Leftrightarrow\left(x-2\right)\left(x+3\right)< 0\)

Vì \(x+3>x-2\)

nên \(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Leftrightarrow-3< x< 2}\)

c, \(\left(5-2x\right)\left(x+4\right)>0\)

TH1 : \(\hept{\begin{cases}5-2x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{2}\\x>-4\end{cases}}\Leftrightarrow-4< x< \frac{5}{2}\)

TH2 : \(\hept{\begin{cases}5-2x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{2}\\x< -4\end{cases}}\)( vô lí )

bạn làm tương tự nhé 

26 tháng 9 2017
toán lớp 7 mà đã học bpt hướng dẫn * tích lớn hơn 0 nên 2 nhân tử cùng dấu ( cùng + or cùng -) * <) thì trái dấu 1+;1-
26 tháng 9 2017

nếu >0 thì hai nhân tử cùng dấu

<0 thì trái dấu

25 tháng 2 2017

Làm câu a và b thoy nhé, câu c tương tự câu a, câu d và e thì dễ rồi.

a) Vì \(\left(3x+1\right)\left(2x-4\right)< 0\)

\(\Rightarrow3x+1>0\)\(2x-4< 0\)

hoặc \(3x+1< 0\)\(2x-4>0\)

+) \(3x+1>0\Rightarrow x>\frac{-1}{3}\left(1\right)\)

\(2x-4< 0\Rightarrow x< 2\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{-1}{3}< x< 2\)

+) \(3x+1< 0\Rightarrow x< \frac{-1}{3}\left(3\right)\)

\(2x-4>0\Rightarrow x>2\left(4\right)\)

Từ (3) và (4) suy ra \(2< x< \frac{-1}{3}\)

\(\Rightarrow\) vô lý.

Vậy \(\frac{-1}{3}< x< 2.\)

b) Do \(\left(-x-5\right)\left(2x+1\right)>0\)

\(\Rightarrow-x-5>0\)\(2x+1>0\)

hoặc \(-x-5< 0\)\(2x+1< 0\)

+) \(-x-5>0\Rightarrow x>-5\left(5\right)\)

\(2x+1>0\Rightarrow x>\frac{-1}{2}\left(6\right)\)

Từ (5) và (6) suy ra \(x>\frac{-1}{2}\)

+) \(-x-5< 0\Rightarrow x< -5\left(7\right)\)

\(2x+1< 0\Rightarrow x< \frac{-1}{2}\) (8)

Từ (7) và (8) suy ra \(x< -5\)

Vậy \(\left[\begin{matrix}x>\frac{-1}{2}\\x< -5\end{matrix}\right.\).

25 tháng 2 2017

d)\(\left|x+3\right|< 5\)

\(\Rightarrow-5< x+3< 5\)

\(\Rightarrow-8< x< 2\)

10 tháng 7 2018

a) \(\left(x+2\right)\left(x-3\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}}\) hoặc   \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}}\)    hoặc     \(\hept{\begin{cases}x< -2\\x>3\end{cases}}\) (loại)

Vậy \(-2< x< 3\)

b) \(\left(2x-5\right)\left(x+3\right)>0\)

\(\Leftrightarrow\hept{\begin{cases}2x-5>0\\x+3>0\end{cases}}\) hoặc   \(\hept{\begin{cases}2x-5< 0\\x+3< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>\frac{5}{2}\\x>-3\end{cases}}\)      hoặc     \(\hept{\begin{cases}x< \frac{5}{2}\\x< -3\end{cases}}\)

Vậy \(x>\frac{5}{2}\) hoặc x < -3