Tìm số tự nhiên x,y biết:
2x+1 x 3y = 12x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: \(2^{x+1}\cdot3^y=12^x\)
\(\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(2^{x+1}.3^y=12x\)
\(\Rightarrow\) \(2^{x+1}.3^y=\left(3.4\right)^x\)
\(\Rightarrow\) \(2^{x+1}.3^y=3^x.2^{2x}\)
\(\Rightarrow\) \(3^{y-x}=2^{x-1}\)
\(\Rightarrow\) \(y-x=x-1=0\)
\(\Rightarrow\) \(x=y=1\)
\(\left(2x+4\right)\times\left(3y+1\right)=10\)
Ta có: \(10=1.10=2.5=\left(-1\right).\left(-10\right)=\left(-2\right).\left(-5\right)\) Và ngược lại
Mà x;y phải thuộc N
Ta lập được bảng sau:
2x+4 | 1 | 10 | 2 | 5 | -1 | -10 | -2 | -5 |
x | \(\frac{-3}{2}\) (loại) | 3 | -1 (loại) | \(\frac{1}{2}\) (loại) | \(\frac{-5}{2}\) (loại) | -7 (loại) | -3(loại) | \(\frac{-9}{2}\) (loại) |
3y+1 | 10 | 1 | 5 | 2 | -10 | -1 | -5 | -2 |
y | 3 | 0 | \(\frac{4}{3}\) (loại) | \(\frac{1}{3}\) (loại) | \(\frac{-11}{3}\) (loại) | \(\frac{-2}{3}\) (loại) | -2(loại) | -1 (loại) |
Vậy (x;y) thỏa mãn là: (3;0)
a, (2x + 1)(y – 5) = 12
Theo đề bài ta có 2x+1)(y-5)=12=>2x+1;y-5 thuộc Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}Mà 2x+1 là số nguyên lẻ=>2x+1 thuộc{1 ; -1;3;-3}=>y-5 thuộc{12;-12;4;-4}=>x thuộc {0;-1;1;-2}=>y thuộc {17;4;9;1}
1) \(\left(x-4\right)\left(y+1\right)=8\)
Do \(y\)là số tự nhiên nên \(y+1\ge1\)nên
ta có bảng giá trị:
x-4 | 1 | 2 | 4 | 8 |
y+1 | 8 | 4 | 2 | 1 |
x | 5 | 6 | 8 | 12 |
y | 7 | 3 | 1 | 0 |
2) \(\left(2x+3\right)\left(y-2\right)=15\)
Có \(x\)là số tự nhiên nên \(2x+3\ge3\). Ta xét bảng giá trị:
2x+3 | 3 | 5 | 15 |
y-2 | 5 | 3 | 1 |
x | 0 | 1 | 6 |
y | 7 | 9 | 3 |
3) \(xy+2x+y=12\)
\(\Leftrightarrow x\left(y+2\right)+y+2=14\)
\(\Leftrightarrow\left(x+1\right)\left(y+2\right)=14\)
Tiếp tục bạn làm tương tự 1) và 2).
4) \(xy-x-3y=4\)
\(\Leftrightarrow y\left(x-3\right)-x+3=7\)
\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=7\)
Tiếp tục bạn làm tương tự 1) và 2).
Giải:
a) \(\left(x-4\right).\left(y+1\right)=8\)
\(\Rightarrow\left(x-4\right)\) và \(\left(y+1\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng giá trị:
x-4 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
y+1 | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
x | -4 | 0 | 2 | 3 | 5 | 6 | 8 | 12 |
y | -2 | -3 | -5 | -9 | 7 | 3 | 1 | 0 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
Vậy \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
b) \(\left(2x+3\right).\left(y-2\right)=15\)
\(\Rightarrow\left(2x+3\right)\) và \(\left(y-2\right)\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
2x+3 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y-2 | -1 | -3 | -5 | -15 | 15 | 5 | 3 | 1 |
x | -9 | -4 | -3 | -2 | -1 | 0 | 1 | 6 |
y | 1 | -1 | -3 | -13 | 17 | 7 | 5 | 3 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
c) \(xy+2x+y=12\)
\(\Rightarrow x.\left(y+2\right)+\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right).\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+2\right)\inƯ\left(14\right)=\left\{1;2;7;14\right\}\)
x+1 | 1 | 2 | 7 | 14 |
y+2 | 14 | 7 | 2 | 1 |
x | 0 | 1 | 6 | 13 |
y | 12 | 5 | 0 | -1 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
d) \(xy-x-3y=4\)
\(\Rightarrow y.\left(x-3\right)-\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right).\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right)\) và \(\left(x-3\right)\inƯ\left(7\right)=\left\{1;7\right\}\)
Ta có bảng giá trị:
x-3 | 1 | 7 |
y-1 | 7 | 1 |
x | 4 | 10 |
y | 8 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(4;8\right);\left(10;2\right)\right\}\)
1
C=3210=32.105=(32)105=9105
D=2310=23.105=(23)105=8105
Vì9105>8105
=>C>D
2
a)2x.(3y-2)+(3y-2)=6
(3y-2).(2x+1)=6
=>6\(⋮\)2x+1
=>2x+1\(\in\)Ư(6)={1;2;3;-1;-2;-3}
Mà 2x+1 là số lẻ
=>2x+1\(\in\){1;3;-1;-3}
Ta có bảng sau:
2x+1 | -1 | -3 | 1 | 3 |
3y-2 | -6 | -2 | 6 | 2 |
x | \(-1\notin N\) | \(-2\notin N\) | \(0\in N\) | \(1\in N\) |
y | \(\frac{-4}{3}\notin N\) | \(0\in N\) | \(\frac{8}{3}\notin N\) | \(\frac{4}{3}\notin N\) |
Vậy x\(\in\){0;1}
y\(\in\){0}
Phần này bạn lên học 24h nha Câu hỏi của Đỗ Thế Minh Quang
Chúc bn học tốt
\(2^{x+1}.3^y=12^x\Rightarrow2^{x+1}.3^y=4^x.3^x\Rightarrow2^{x++1}.3^y=2^{2x}.3^x\)'
\(\Rightarrow\hept{\begin{cases}x+1=2x\\x=y\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x=y\end{cases}\Rightarrow}x=y=1}\)