Tìm x thuộc Q
5.(x-1)+/x-2/=/12-3x/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x thuộc N
1) ( 2x + 3) thuộc B(x - 2 )
2) ( x + 1 ) thuộc Ư( 2x + 7)
3) ( 3x + 12) thuộc B( 3x + 7)
a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)
\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)
b. -Để M thuộc Z thì:
\(\left(x^2+x-2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)
\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)
\(\Rightarrow4⋮\left(x+3\right)\)
\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)
c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)
\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)
a) 4(x+1)-(3x+1)=14
<=>4x+4-3x-1=14
<=>4x-3x = 14-4
<=>x=10
b) -12(x-5) +7.(3x)=5
<=> -12x +60 + 21+7x=5
<=> -12x+7x=5-60-21
<=> -5x=-76
<=> x=76/5
c) 17x + 34 -4x+28-9x=82
<=> 17x-9x-4x=82-34-28
<=> 4x=20
<=> x=5
1)12.(-76) + 36.(-8)
= 12. (-76) + 3 . 12 . (-8)
= 12.(-76) - 24 . 12
= 12.(-76 - 24)
= 12.(-100)
= -1200
2,a) Ta có : -13 = -1. 13 = (-13). 1 = 1 . (-13) = 13 . (-1)
Lập bảng :
3x - 1 | -1 | 1 | -13 | 13 |
y + 4 | 13 | -13 | 1 | -1 |
x | 0 | 2/3 | -4 | 14/3 |
y | 9 | -17 | -3 | -5 |
vì x,y thuộc Z nên
b) Tự làm
b, \((5x-1)(y+1)=4\)
\(\Rightarrow(5x-1)(y+1)\inƯ(4)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng :
5x - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
y + 1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | loại | 0 | loại | loại | 1 | loại |
y | -5 | 3 | -3 | 1 | -2 | 0 |
Vậy :
a) Ta có: \(\left|3x-2\right|=11-2\)
\(\Rightarrow3x-2=\pm\left(11-2\right)\)
Nếu 3x - 2 = 11 - 2
=> 3x = 15
=> x = 5
Nếu 3x -2 = -11 + 2
=> 3x = -7
=> x = -7/3
Vậy x = 5
b) Tương tự
3x ( y - 1 ) + y = 6
=> 3xy - 3x + y = 6
=> 3x.( y - 1 ) + ( y - 1 ) + 1 = 6
=> ( y - 1 ) . ( 3x + 1 ) = 6 - 1
=> ( y - 1 ) . ( 3x + 1 ) = 5 = 1 . 5 = 5 . 1 = ( -1 ) . ( -5 ) = ( -5 ) . ( -1 )
TH1 :
\(\hept{\begin{cases}y-1=1\\3x+1=5\end{cases}}\Rightarrow\hept{\begin{cases}y=2\\x=\frac{4}{3}\end{cases}}\Rightarrow\text{loại}\)
TH2 :
\(\hept{\begin{cases}y-1=5\\3x+1=1\end{cases}}\Rightarrow\hept{\begin{cases}y=6\\x=0\end{cases}}\)
TH3 :
\(\hept{\begin{cases}y-1=-1\\3x+1=-5\end{cases}}\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
TH4 :
\(\hept{\begin{cases}y-1=-5\\3x+1=-1\end{cases}}\Rightarrow\hept{\begin{cases}y=-4\\x=\frac{-2}{3}\end{cases}}\Rightarrow\text{loại}\)
Vậy : ( x ; y ) \(\in\){ ( 0 ; 6 ) ; ( -2 ; 0 }
b. Câu hỏi của Super man - Toán lớp 7 - Học toán với OnlineMath