tínhnhanh
2018x2018-2017x2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
2018 x 2018 = ( 2017 + 1 ) x ( 2019 - 1 )
= ( 2017 + 1 ) x 2019 - ( 2017 + 1 )
= 2017 x 2019 + 2019 - 2017 - 1
= 2017 x 2019 + 1 > 2017 x 2019
\(\Rightarrow\frac{2018\times2018}{2017\times2019}=\frac{2017\times2019+1}{2017\times2019}=1+\frac{1}{2017\times2019}>1\)
Vậy ta chọn B
~~Học tốt~~
\(\frac{2016+2017.2018}{2017.2019-1}\)
\(=\frac{\left(2016+1\right)+2017.2018-1}{2017.2019-1}\)
\(=\frac{2017+2017.2018-1}{2017.2019-1}\)
\(=\frac{2017.\left(1+2018\right)-1}{2017.2019-1}\)
\(=\frac{2017.2019-1}{2017.2019-1}=1\)
\(\frac{2016+2017\times2018}{2017\times2019-1}\)
\(=\frac{2016+2017\times2018}{2017\times\left(2018+1\right)-1}\)
\(=\frac{2016+2017\times2018}{2017\times2018+2017-1}\)
\(=\frac{2016+2017\times2018}{2017\times2018+2016}\)
\(=1\)
__CHÚC BN HOK TỐT__
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{2017.2019}\)
\(=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\left(1-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\frac{2018}{2019}\)
\(=\frac{1009}{673}\)
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}.....+\frac{3}{2017.2019}\)
\(=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{2017.2019}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+....+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\frac{2018}{2019}=\frac{1009}{673}\)
\(\frac{2016+2017.2018}{2017.2019-1}\)
= \(\frac{2016+2017.2018}{2017.2018+2017-1}\)
= \(\frac{2016+2017.2018}{2017.2018+2016}\)
= 1
p=1/(3*5)+1/(5*7)+.....+1/(2015*2017)+1/(2017*2019)
<=> p = 1/3-1/5+1/5-1/7+1/7-......+1/2017-1/2019
<=> p = 1/3 - 1/2019
<=> p = 224/673
\(P=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2015.2017}+\frac{1}{2017.2019}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2019}\right)\)
\(=\frac{112}{673}\)
Câu a
\(S=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{2019-2017}{2017x2019}.\)
\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}=1-\frac{1}{2019}=\frac{2018}{2019}\)
Câu b
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^6}+\frac{1}{3^7}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^5}+\frac{1}{3^6}\)
\(2A=3A-A=1-\frac{1}{3^7}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^7}\)
a) Sửa đề: C/m tứ giác BEHC nội tiếp
Xét tứ giác BEHC có
\(\widehat{BEC}=\widehat{BHC}\left(=90^0\right)\)
\(\widehat{BEC}\) và \(\widehat{BHC}\) là hai góc cùng nhìn cạnh BC
Do đó: BEHC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
\(2018\cdot2018-2017\cdot2019\)
\(=2018\cdot2018-2017\left(2018-1\right)\)
\(=2018\cdot2018-2017\cdot2018-2017\cdot1\)
\(=2018\left(2018-2017\right)-2017\cdot1\)
\(=2018\cdot1-2017\cdot1\)
\(=1\)
\(2018\cdot2018-2017\cdot2019\)
\(=(2019-2018)\cdot(2018-2017)\)
\(=1\)