Cho hình vuông ABCD. M là 1 điểm nằm trên cạnh BC, tia AM cắt CM tại N, chứng minh 1/AM2 + 1/AN2 = 1/AB2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
AH
Akai Haruma
Giáo viên
12 tháng 9 2021
Lời giải:
Do $AB\parallel CN$ nên áp dụng định lý Talet:
$\frac{AM}{MN}=\frac{AB}{CN}=\frac{DC}{CN}$
$\Rightarrow \frac{AM}{AM+MN}=\frac{DC}{DC+CN}$ hay $\frac{AM}{AN}=\frac{DC}{DN}$
$\Rightarrow AM=\frac{AN.DC}{DN}$
Do đó:
$\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{DN^2}{AN^2.DC^2}+\frac{1}{AN^2}$
$=\frac{1}{AN^2}.\frac{DN^2+DC^2}{DC^2}$
$=\frac{1}{AN^2}.\frac{DN^2+AD^2}{DC^2}$
$=\frac{1}{AN^2}.\frac{AN^2}{DC^2}$ (theo định lý Pitago)
$=\frac{1}{DC^2}$
Ta có đpcm.
bai nay khong ve duoc hinh vuong ban oi
Thế nếu là hcn thì làm ntn bạn