K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

27 tháng 8 2020

a) Ta có: \(A=1+3+3^2+...+3^{99}+3^{100}\)

=> \(3A=3+3^2+3^3+...+3^{100}+3^{101}\)

=> \(3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)

<=> \(2A=3^{101}-1\)

=> \(A=\frac{3^{101}-1}{2}\)

b) Ta có: \(B=1+4+4^2+...+4^{100}\)

=> \(4B=4+4^2+4^3+...+4^{101}\)

=> \(4B-B=\left(4+4^2+...+4^{101}\right)-\left(1+4+...+4^{100}\right)\)

<=> \(3B=4^{101}-1\)

=> \(B=\frac{4^{101}-1}{3}\)

1 tháng 5 2017

a) A =1+3+32+33+...+3100

   3A = 3 + 32+33+...+3101

   3A-A=( 3 + 32+33+...+3101)-(1+3+32+33+...+3100)

    2A = 3101-1

    A = \(\frac{3^{101}-1}{2}\)

    Thùy An làm sai rùi

2 tháng 8 2016

a) A=1+3+3^2+...+3^100

3A=3+3^2+....+3^101

3A-A=1+3^101

A=(1+3^101)/2

27 tháng 9 2019

A = 2100 - 299 + 298 - 297 +...+ 22 - 2

=> 2A = 2101 - 2100+299 - 298+...+23-22

=> 2A+A= 2101 -2

=> \(A=\frac{2^{101}-2}{3}\)

phần B bn lm tương tự nha!
 

26 tháng 10 2021

\(A=3+3^2+3^3+...+3^{99}+3^{100}\)

\(3A=3^2+3^3+3^4+...+3^{100}+3^{101}\)

\(3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)-\left(3+3^2+3^3+...+3^{99}+3^{100}\right)\)

\(2A=3^{101}-3\)

\(A=\dfrac{3^{101}-3}{2}\)

7 tháng 7 2017

\(K=2^1-2^2+2^3-2^4+...+2^{99}-2^{100}\)

\(2K=2\left(2^1-2^2+2^3-2^4+...+2^{99}-2^{100}\right)\)

\(2K=2^2-2^3+2^4-2^5+....+2^{100}-2^{101}\)

\(2K+K=\left(2^2-2^3+2^4-2^5+.....+2^{100}-2^{101}\right)+\left(2^1-2^2+2^3-2^4+.....+2^{99}-2^{100}\right)\)\(3K=2-2^{101}\)

\(K=\dfrac{2-2^{101}}{3}\)

10 tháng 9 2017

\(A=2+2^2+...+2^{99}+2^{100}\)

\(2A=2^2+2^3+...+2^{101}\)

\(2A-A=\left(2^2+2^3+....+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

\(A=2^{101}-2\)

10 tháng 9 2017

A= 2+2^2+2^3+...+2^99+2^100

=>2A=2^2+2^3+2^4+...+2^100+2^101

=> 2A - A =(2^2+2^3+2^4+...+2^100+2^101)-(2+2^2+2^3+...+2^99+2^100)

=>A = 2^101-2