Cho S=\(\frac{2}{3-\sqrt{x}}\)với x> hoặc =0, x #4. Tìm x để S= 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{2x+2\sqrt{x}+3\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)
\(=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}.\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2018}{\sqrt{x}+1}\)
\(\frac{\sqrt{x}+2018}{\sqrt{x}+1}=1+\frac{2017}{\sqrt{x}+1}\le2018\)
Dấu "=" xảy ra \(\Leftrightarrow\)
...
\(ĐKXĐ:\hept{\begin{cases}x\ne9\\x\ge0\end{cases}}\)
\(B=\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\)
\(\Leftrightarrow B=\frac{3+\sqrt{x}}{9-x}+\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{9-x}+\frac{x+9}{9-x}\)
\(\Leftrightarrow B=\frac{3+\sqrt{x}+3\sqrt{x}-x+x+9}{9-x}\)
\(\Leftrightarrow B=\frac{4\sqrt{x}+12}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
\(\Leftrightarrow B=\frac{4\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow B=\frac{4}{3-\sqrt{x}}\)
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne\pm2\end{cases}}\)
\(P=\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{2}{\sqrt{x}+2}-\frac{4\sqrt{x}}{x-4}\)
\(\Leftrightarrow P=\frac{x+2\sqrt{x}-2\sqrt{x}+4-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow P=\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow P=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
Để P là số nguyên \(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+2}\)là số nguyên
\(\Leftrightarrow\sqrt{x}-2⋮\sqrt{x}+2\)
\(\Leftrightarrow4⋮\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}+2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-3;-1;-4;0;-6;2\right\}\)
Loại những giá trị \(\sqrt{x}\in\left\{-3;-1;-4;-6;2\right\}\)
\(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow x=0\)
Vậy để P là số nguyên \(\Leftrightarrow x=0\)
Cho mình sửa 1 chút nhé :
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(M=\frac{\sqrt{x}}{\sqrt{x}+1}\left(x\ge0\right)\)
Khi \(M=\sqrt{x}-2\)
\(\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow\sqrt{x}=x+\sqrt{x}-2\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}=x-\sqrt{x}-2\)
\(\Leftrightarrow x-\sqrt{x}-\sqrt{x}-2=0\)
\(\Leftrightarrow x-2\sqrt{x}+1-3=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2=3\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2=\left(\pm\sqrt{3}\right)^2\)
\(\Leftrightarrow\sqrt{x}-1=\pm\sqrt{3}\)
\(\Leftrightarrow\sqrt{x}=\pm\sqrt{3}+1\)
\(\Leftrightarrow\orbr{\begin{cases}x=\left(\sqrt{3}+1\right)^2\\x=\left(-\sqrt{3}+1\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3+2\sqrt{3}+1\\1-2\sqrt{3}+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4+2\sqrt{3}\\x=4-2\sqrt{3}\end{cases}}\)
Vậy \(x\in\left\{4\pm2\sqrt{3}\right\}\)khi \(M=\sqrt{x}-2\)
Để S = 1
\(\Rightarrow3-\sqrt{x}=2:1=2\)
\(\Rightarrow\sqrt{x}=3-2=1\)
\(\Rightarrow x=1\)
Để S = 1
\(\Rightarrow3-\sqrt{x}=2.1=2\)
\(\Rightarrow\sqrt{x}=3-2=1\)
\(\Rightarrow x=1\)