1,Giai:
\(\frac{2x-1}{x+2}\ge3\)
Giúp mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-\frac{2x+1}{2}-\frac{x+2}{3}=\frac{6x}{6}-\frac{3.\left(2x+1\right)}{6}-\frac{2.\left(x+2\right)}{6}\)
\(=\frac{6x-6x-3-2x-4}{6}=\frac{-2x-7}{6}>1\)
\(\Leftrightarrow-2x-7>6\)
\(\Leftrightarrow-2x>13\)
\(\Leftrightarrow x< \frac{-13}{2}\)
Vậy để biểu thức > 1 khi và chỉ khi x < -13/2
điều kiện: \(-2\le x\le2\)
pt\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{6x-4}{\sqrt{x^2+4}}\)
\(\Leftrightarrow6x-4=0\Leftrightarrow x=\frac{2}{3}\)(t/m)
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)
d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)
e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)
Chả biết đúng hay sai. Làm bừa! =(((
Dự đoán dấu "=" xảy ra khi a = 3
Ta có: \(VT=\left(\frac{1}{a}+\frac{a}{9}\right)+\frac{8a}{9}\ge2\sqrt{\frac{1a}{9a}}+\frac{8a}{9}\) (BĐT AM-GM)
\(=2\sqrt{\frac{1}{9}}+\frac{8a}{9}=\frac{2}{3}+\frac{8a}{9}\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}^{\left(đpcm\right)}\) (do \(a\ge3\))
Dấu "=" xảy ra \(\Leftrightarrow a=3\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{1}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
\(=\dfrac{1}{x-1}-\dfrac{x\cdot2}{\left(x-1\right)\left(x^2+1\right)}\)
\(=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)
\(\frac{2x-1}{x+2}\ge3\Leftrightarrow2x-1\ge3.\left(x+2\right)\)
\(\Leftrightarrow2x-1\ge3x+6\)
\(\Leftrightarrow2x-3x\ge6+1\)
\(\Leftrightarrow-x\ge7\)
\(\Leftrightarrow x\le-7\)
Vậy .....
\(2x-1>=3\left(x+2\right)=3x+6\Rightarrow-7>=x\)