K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

\(\frac{2x-1}{x+2}\ge3\Leftrightarrow2x-1\ge3.\left(x+2\right)\)

                          \(\Leftrightarrow2x-1\ge3x+6\)

                          \(\Leftrightarrow2x-3x\ge6+1\)

                           \(\Leftrightarrow-x\ge7\)

                            \(\Leftrightarrow x\le-7\)

Vậy .....

8 tháng 7 2018

\(2x-1>=3\left(x+2\right)=3x+6\Rightarrow-7>=x\)

8 tháng 7 2018

\(x-\frac{2x+1}{2}-\frac{x+2}{3}=\frac{6x}{6}-\frac{3.\left(2x+1\right)}{6}-\frac{2.\left(x+2\right)}{6}\)

                                           \(=\frac{6x-6x-3-2x-4}{6}=\frac{-2x-7}{6}>1\)

\(\Leftrightarrow-2x-7>6\)

\(\Leftrightarrow-2x>13\)

\(\Leftrightarrow x< \frac{-13}{2}\)

Vậy để biểu thức > 1 khi và chỉ khi x < -13/2

15 tháng 8 2016

điều kiện: \(-2\le x\le2\)

pt\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{6x-4}{\sqrt{x^2+4}}\)

\(\Leftrightarrow6x-4=0\Leftrightarrow x=\frac{2}{3}\)(t/m)

15 tháng 8 2016
Thiếu nghiệm x=2 rồi

c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)

d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)

e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)

10 tháng 4 2020

các bạn giúp mình câu này với nhé

3 tháng 11 2018

Chả biết đúng hay sai. Làm bừa! =(((

Dự đoán dấu "=" xảy ra khi a = 3

Ta có: \(VT=\left(\frac{1}{a}+\frac{a}{9}\right)+\frac{8a}{9}\ge2\sqrt{\frac{1a}{9a}}+\frac{8a}{9}\) (BĐT AM-GM)

\(=2\sqrt{\frac{1}{9}}+\frac{8a}{9}=\frac{2}{3}+\frac{8a}{9}\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}^{\left(đpcm\right)}\) (do \(a\ge3\))

Dấu "=" xảy ra \(\Leftrightarrow a=3\)

3 tháng 11 2018

Cách khác (không chắc)

Đặt a = 3 + m (\(m\ge0\))

Ta có: \(VT=3+m+\frac{1}{3+m}\ge3+\frac{1}{3}=\frac{10}{3}\) (do \(m\ge0\))

\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{1}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{x\cdot2}{\left(x-1\right)\left(x^2+1\right)}\)

\(=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)