Chứng minh rằng:
\(21^{10}-1⋮200\) \(39^{20}+39^{13}⋮40\)
\(2^{60}+5^{30}⋮41\) \(2005^{2007}+2007^{2005}⋮2006\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 thôi em dùng đồng dư cho chắc:v
a) \(21^2\equiv41\left(mod200\right)\Rightarrow21^{10}\equiv41^5\equiv1\left(mod200\right)\)
Suy ra đpcm.
b) \(39^2\equiv1\left(mod40\right)\Rightarrow39^{20}\equiv1\left(mod40\right)\)
Mặt khác \(39^2\equiv1\left(mod40\right)\Rightarrow39^{12}\equiv1\Rightarrow39^{13}\equiv39\left(mod40\right)\)
Suy ra \(39^{20}+39^{13}\equiv1+39\equiv40\equiv0\left(mod40\right)\)
Suy ra đpcm
c) Do 41 là số nguyên tố và (2;41) = 1 nên:
\(2^{20}\equiv1\left(mod41\right)\) suy ra \(2^{60}\equiv1\left(mod41\right)\)
Dễ dàng chứng minh \(5^{30}\equiv40\left(mod41\right)\)
Suy ra đpcm.
d) Tương tự
a) \(21^{10}-1=\left(21^5\right)^2-1^2=\left(21^5+1\right).\left(21^5-1\right)\)
\(21^5+1=\overline{...1}=2k+1+1=2n\)
\(21^5-1=\overline{...01}-1=\overline{...00}\)
\(\Rightarrow21^{10}-1=2n.\overline{...00}⋮200\left(đpcm\right).\)
b) \(39\equiv-1\left(mod40\right)\)
\(\Rightarrow39^{20}\equiv1\left(mod40\right)\)
\(\Rightarrow39^{19}\equiv-1\left(mod40\right)\)
\(\Rightarrow39^{20}+39^{19}\equiv1+\left(-1\right)\left(mod40\right)\)
\(\Leftrightarrow39^{20}+39^{19}\equiv0\left(mod40\right)\)
\(\Rightarrow39^{20}+39^{19}⋮40\left(đpcm\right).\)
d) \(2005\equiv-1\left(mod2006\right)\)
\(\Rightarrow2005^{2007}\equiv\left(-1\right)^{2007}=-1\left(mod2006\right)\)
\(2007\equiv1\left(mod2006\right)\)
\(\Rightarrow2007^{2005}\equiv1\left(mod2006\right)\)
\(\Rightarrow2005^{2007}+2007^{2005}\equiv-1+1=0\left(mod2006\right)\)
\(\Leftrightarrow2005^{2007}+2007^{2005}⋮2006\left(đpcm\right).\)