Cho tam giác ABC cân tại A.Vẽ trung tuyến AM
a)Biết AB= 13cm ,BC= 10cm.Tính AM
b)Vẽ đường trung trực của đoạn thẳng AC cắt AC tại E và cắt CB tại F. AM cắt EF tại I . Chứng minh rằng tam giác ACF cân và CI ⊥ AF
c)Trên tia đối của tia AF lấy điểm D sao cho AD=BF.Chứng minh rằng : △CFD cân
d)Tìm điều kiện của △ABC để CD⊥CF
a, AM là đường trung tuyến của tam giác cân ABC => BM=MC=1/2 BC = 5
AM là đường trung tuyến của tam giác cân ABC nên AM cũng đồng thời là đường cao trong tam giác này
=> góc AMB = 90độ
Áp dụng định lí Pytago vào tam giác vuông ABM tại M có: \(AM^2=AB^2-BM^2=13^2-5^2=12^2\Rightarrow AM=12\\ \)
b, EF là trung trực AC => FE vuông góc AC và R là trung điểm AC
Hay góc FEC=90độ và EC=EA
Xét tam giác FEC và FEA có:
FE _ cạnh chung
góc FEC = góc FEA = 90độ
EC=EA
=> tg FEC = tg FEA (c-g-c) => FC=FA => tg FAC cận tại F
Xét tg FAC có FE, AM là 2 đường cao trong tam giác và chúng cắt nhau tại I => I là trực tâm tg FAC => CI vuong góc À