Với a ≥ 0, b ≥ 0, chứng minh
√( (a+b)^2) ≥ (√a+√b)/ 2
giải chi tiết ra giúp. phần giải trên mạng mình k hiểu nên đừng chép
thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a là bội của b;b là bội cuẩ nên a chia hết cho b; b chia hết cho a hay a=qb;b=pa với q;p là số nguyên
Ta có: a=qb=q(ap)=(qp)a nên pq =1 và q=p=1 hay q=p=-1
Từ đó ta có diều cần chứng minh
có thể giải theo cách đơn giản như sau:
Giải:
Vì a là bội của b nên ta có:
* a= m.b(m thuộc Z)
Vì b là bội của a nên ta có:
** b=n.a( n thuộc Z)
Kết hợp * và ** ta được:
a:m=n.a
\(\Rightarrow\)1:m=n mà n thuộc Z do đó suy ra m=1 hoặc m=-1
Vậy:-Khi m=1 ta được a=b
Khi m=-1 ta được a=-b
a)Mình nghĩ là chứng minh \(A\left(2\right).A\left(-1\right)\le0\)mới đúng chớ! Mình làm theo đề đã sửa nhé!
Ta có: \(A\left(2\right)=4a+2b+c\)
\(A\left(-1\right)=a-b+c\)
Suy ra \(A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)
Suy ra \(A\left(2\right)=-A\left(-1\right)\)
Thay vào,ta có: \(A\left(2\right).A\left(-1\right)=-\left[A\left(-1\right)\right]^2\le0\) (đúng)
b)Theo đề bài A(x) = 0 với mọi x nên:
\(A\left(1\right)=a+b+c=0\Rightarrow a=-b-c\) (1)
\(A\left(-1\right)=a-b+c=0\Rightarrow b=a+c\) (2)
Cộng (1) và (2) lại,ta được: \(a+b=a-b\Leftrightarrow2b=0\Leftrightarrow b=0\) (*)
Khi đó \(A\left(x\right)=ax^2+c=0\forall x\)
\(\Rightarrow A\left(1\right)=a+c=0\Rightarrow a=-c\) (3)
\(A\left(2\right)=4a+c=0\Leftrightarrow-4a=c\) (4)
Cộng theo vế (3) và (4) suy ra \(-3a=0\Leftrightarrow a=0\) (**)
Thay a = b = 0 vào,ta có: \(A\left(x\right)=c=0\forall x\)(***)
Từ (*);(**) và (***) ta có a = b =c = 0 (đpcm)
Đúng ko ta?
a. trước tiên tìm lượng nước đã có ở trong bể,lấy:
2/5+3/7=29/35
số 1 có nghĩa là PHÂN SỐ của cái hồ bơi khi đầy(35/35)
rồi tìm phần bể chưa có nước ,lấy:
35/35 - 29/35 = 6/35
đáp án : 6/35
b. tìm phần số nước còn lại chiếm bể , lấy :
35/35 - 2/7 = 25/35
đáp án : 25/35
Dễ thấy với a,b >0 thì (a+b)/2 ≥ √ab <=> 1/(a+b) ≤ 1/4 (1/a +1/b)
Áp dụng bất đẳng thức Cauchy ta được
1/(a+2b+3c)=1/[(a+c)+2(b+c)]≤ 1/4[1/(a+c)+1/2(b+c)] (lại áp dụng tiếp được)
≤ 1/16a+1/16c+1/32b+1/32c
=1/16a+1/32b+3/32c
Trường hợp này dấu "=" xảy ra <=> a+c=2(b+c);a=c;b=c <=> c= 0 mâu thuẩn giả thiết
Do đó dấu "=" không xảy ra
Thế thì 1/(a+2b+3c)<1/16a+1/32b+3/32c (1)
Tương tự 1/( b+2c+3a)<1/16b+1/32c+3/32a (2)
1/ ( c+2a+3b) < 1/16c+1/32a+3/32b (3)
Cộng (1)(2)(3) cho ta
1/( a+2b+3c) + 1/( b+2c+3a) + 1/ ( c+2a+3b) <(1/16+1/32+3/32)(1/a+1/b+1/c)
=3/16*(ab+bc+ca)abc= 3/16
tk nha mk trả lời đầu tiên đó!!!