Cho hình thoi ABCD có góc A = 120 độ . Điểm M di động trên cạnh AB , tia DM cắt tia CB tại N , CM cắt AN tại E . Chứng minh E di động trên một cung tròn cố định .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối tia AB lấy P sao cho AP = BE
\(\Delta PAD=\Delta EBA\left(c.g.c\right)\)\(\Rightarrow\widehat{PDA}=\widehat{A_1}\)
Mà \(\widehat{D_1}=\widehat{E_1}\)( c/m )
Ta có : \(\widehat{PDE}+\widehat{DEF}=\widehat{PDA}+\widehat{D_1}+\widehat{FED}=\widehat{A_1}+\widehat{E_1}+\widehat{FED}=90^o\)
\(\Rightarrow EF\perp PD\)
Xét \(\Delta PBC\)và \(\Delta ECD\)có :
PB = EC ; \(\widehat{PBC}=\widehat{ECD}\); BC = CD
\(\Rightarrow\Delta PBC=\Delta ECD\left(c.g.c\right)\)
\(\Rightarrow\widehat{CPB}=\widehat{E_1}\)
Ta có : \(\widehat{CPB}+\widehat{PID}=\widehat{E_1}+\widehat{EIB}=90^o\)
\(\Rightarrow CP\perp ED\)
do đó : F là trực tâm \(\Delta EPD\)
\(\Rightarrow DF\perp EP\) ( 1 )
Xét \(\Delta EPC\)có : \(PB\perp EC;EI\perp CP\) nên I là trực tâm \(\Delta EPC\)
\(\Rightarrow CM\perp EP\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow DF//IM\Rightarrow\frac{MI}{FD}=\frac{EI}{ED}=\frac{EM}{EF}\) ( 3 )
\(IB//CD\Rightarrow\frac{EB}{EC}=\frac{EI}{ED}\) ( 4 )
Từ ( 3 ) và ( 4 ) suy ra \(\frac{MI}{FD}=\frac{EB}{EC}\Rightarrow BM//FC\)
\(\Rightarrow BM\perp DE\)
p/s : mệt
b: góc FAK=góc FCK=90 độ
=>ACFK nội tiếp
=>góc CAF=góc CKF
a: góc AKF=180 độ-góc ACF=180 độ-90 độ-45 độ=45 độ
=>ΔAKF vuông cân tại A