x,y>0,x+y=1.Tim minP=2018/xy+2019/x^2+y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Áp dụng C-S dạng engel
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)
\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)
Áp dụng Bất đẳng thức Cauchy :
\(\dfrac{1}{x^2+y^2}+\dfrac{x^2+y^2}{4}\ge1\)
\(\dfrac{1}{xy}+xy\ge2\)
Cộng vế theo vế, ta được:
\(\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}+\dfrac{x^2+y^2}{4}+xy\ge3\)
\(\Leftrightarrow P+\dfrac{x^2+y^2+4xy}{4}\ge3\)
\(\Leftrightarrow P+\dfrac{\left(x+y\right)^2+2xy}{4}\ge3\)
\(\Leftrightarrow P+\dfrac{4+2xy}{4}\ge3\Leftrightarrow P\ge3-\dfrac{4-2xy}{4}\) (vì: \(x+y=2\Rightarrow\left(x+y\right)^2=4\) )
Mà: \(x^2+y^2\ge2xy\Rightarrow x^2+y^2+2xy\ge4xy\Rightarrow4\ge4xy\Rightarrow2\ge2xy\)
\(\Rightarrow P=3-\dfrac{4+2xy}{4}\ge3-\dfrac{4-2}{4}=\dfrac{3}{2}\)
Vậy \(MinP=\dfrac{3}{2}\) khi \(x+y=1\)
Áp dụng BĐT AM-GM ta có:
\(x+y=2\ge2\sqrt{xy}\Rightarrow4\ge4xy\Rightarrow xy\le1\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\)
\(\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}+\dfrac{1}{2xy}=\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2xy}\)
\(\ge\dfrac{4}{4}+\dfrac{1}{2}=1+\dfrac{1}{2}=\dfrac{3}{2}\left(x+y=2;xy\le1\right)\)
Đẳng thức xảy ra khi \(x=y=1\)
\(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{9}{3+xy+yz+zx}\)
\(\ge\dfrac{9}{3+x^2+y^2+z^2}\ge\dfrac{9}{3+3}=\dfrac{3}{2}\)
Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)
Ta có :
gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3
Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 33 là sẽ tìm được nghiệm nguyên của PT
Đề bị sai kia bạn biểu thức thứ 3 đó
Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) (bạn xem trên mạng đi có đó từ bđt cô si mà ra ) ta có:
\(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\ge\dfrac{9}{3+xy+yz+zx}\ge\dfrac{9}{3+3}=\dfrac{3}{2}\)
(vì \(xy+yz+zx\le x^2+y^2+z^2\le3\))
Vậy Min P = 3/2 khi x=y=z=1