Tính \(\left(x-n\right)^2=1\)
Viết các biểu thức sau dưới dạng 1 luỹ thừa
\(9x3^3x\frac{6}{81}x3^2\)
So sánh
\(2^{225}\) và \(3^{150}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,a^{\dfrac{3}{5}}\cdot a^{\dfrac{1}{2}}:a^{-\dfrac{2}{5}}=a^{\dfrac{3}{5}+\dfrac{1}{2}-\left(-\dfrac{2}{5}\right)}=a^{\dfrac{3}{2}}\\ b,\sqrt{a^{\dfrac{1}{2}}\sqrt{a^{\dfrac{1}{2}}\sqrt{a}}}\\ =\sqrt{a^{\dfrac{1}{2}}\sqrt{a^{\dfrac{1}{2}}\cdot a^{\dfrac{1}{2}}}}\\ =\sqrt{a^{\dfrac{1}{2}}\sqrt{a}}\\ =\sqrt{a^{\dfrac{1}{2}}\cdot a^{\dfrac{1}{2}}}\\ =\sqrt{a}\)
\(a,\sqrt{2^3}=2^{\dfrac{3}{2}}\\ b,\sqrt[5]{\dfrac{1}{27}}=\sqrt[5]{3^{-3}}=3^{-\dfrac{3}{5}}\\ c,\left(\sqrt[5]{a}\right)^4=\sqrt[5]{a^4}=a^{\dfrac{4}{5}}\)
a: \(=3\cdot3^{\dfrac{1}{2}}\cdot3^{\dfrac{1}{.4}}\cdot3^{\dfrac{1}{8}}=3^{1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}}=3^{\dfrac{15}{16}}\)
b: \(=\sqrt{a\cdot\sqrt{a\cdot a^{\dfrac{1}{2}}}}\)
\(=\sqrt{a\cdot\sqrt{a^{\dfrac{3}{2}}}}=\sqrt{a\cdot a^{\dfrac{3}{4}}}=\sqrt{a^{\dfrac{7}{4}}}=a^{\dfrac{7}{4}\cdot\dfrac{1.}{2}}=a^{\dfrac{7}{8}}\)
c: \(=\dfrac{a^{\dfrac{1}{2}}\cdot a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{4}}}{\left(a^{\dfrac{1}{5}}\right)^3\cdot a^{\dfrac{2}{5}}}=\dfrac{a^{\dfrac{13}{12}}}{a}=a^{\dfrac{1}{12}}\)
a) \({\left( {\frac{8}{9}} \right)^3} \cdot \frac{4}{3} \cdot \frac{2}{3} = {\left( {\frac{8}{9}} \right)^3}.\frac{8}{9} = {\left( {\frac{8}{9}} \right)^{3+1}}={\left( {\frac{8}{9}} \right)^4}\)
b) \({\left( {\frac{1}{4}} \right)^7} \cdot 0,25 = {\left( {0,25} \right)^7}.0,25 ={\left( {0,25} \right)^{7+1}}= {\left( {0,25} \right)^8}\)
c) \({( - 0,125)^6}:\frac{{ - 1}}{8} = {\left( {\frac{{ - 1}}{8}} \right)^6}:\frac{{ - 1}}{8} = {\left( {\frac{{ - 1}}{8}} \right)^{6-1}}= {\left( {\frac{{ - 1}}{8}} \right)^5}\)
d) \({\left[ {{{\left( {\frac{{ - 3}}{2}} \right)}^3}} \right]^2} = {\left( {\frac{{ - 3}}{2}} \right)^{3.2}} = {\left( {\frac{{ - 3}}{2}} \right)^6}\)