Tìm m,n thuộc Z* sao cho: \(2^m-2^n=256\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2^m-2^n=256\)
\(\Rightarrow2^n.\left(2^{m-n}-1\right)=256\)
Do \(2^{m-n}-1\) chia 2 dư 1 mà \(256=2^8\)
\(\Rightarrow2^n=2^8;2^{m-n}-1=1\)
\(\Rightarrow n=8;2^{m-n}=2=2^1\)
\(\Rightarrow n=8;m-n=1\)
\(\Rightarrow n=8;m=9\)
Vậy \(m=9;n=8\)
bạn vô lik này nhé:
http://olm.vn/hoi-dap/question/164700.html
Nhớ tick cho mik
2m-2n=256 => 2m-2n-28= 0 => 28(2m-8-2n-8-1)=0.
Vì 28 >0 nên 2m-8 - 2n-8 -1 =0 => 2m-8 =2n-8 +1 (1)
- Nếu 2m-8 ko chia hết cho 2 thì 2n-8 >2 và 2m-8= 1 (trái với 1)
- Nếu 2m-8 chia hết 2 thì 2n-8 ko chia hết 2 => 2n-8 =1 => n-8 = 0 => n=8 => m=9.
Vậy m=9, n=8.
Ta có : 2m − 2n = 256 = 28
⇔28 = 2n(2m-n − 1)
Nếu m − n=0 (vô lý)
Nếu m − n > 0
⇒2m-n − 1 lẻ mà 28 chẵn ⇒
2m-n −1 = 1⇒ m = n+1⇒ 2m−n−1 = 1⇒m=n+1
⇒2n=28⇒n=8,m=9
2m + 2n = 2m+n
=> 2m = 2m+n - 2n = 2n.(2m - 1)
Dễ thấy m \(\ne0\Rightarrow2^m⋮2\)
Mà 2m - 1 chia 2 dư 1 nên \(\begin{cases}2^m=2^n\\2^m-1=1\end{cases}\)\(\Rightarrow\begin{cases}m=n\\2^m=2=2^1\end{cases}\)=> m = n = 1
Vậy m = n = 1
2m - 2n = 256
=> 2n.(2m-n - 1) = 28
Dễ thấy: \(2^{m-n}-1\ne0\Rightarrow2^{m-n}\ne1\) => m - n \(\ne0\)
\(\Rightarrow2^{m-n}⋮2\)
=> 2m-n - 1 chia 2 dư 1
=> \(\begin{cases}2^n=2^8\\2^{m-n}-1=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\2^{m-n}=2=2^1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m-n=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m=9\end{cases}\)
Vậy n = 8; m = 9
click vào dòng màu xanh này mà tham khảo Giúp mình mấy câu hỏi này nha!!!? | Yahoo Hỏi & Đáp
\(n^2=(a+1)^3-a^3\)
\(n^2+3(a+1)a=(a+1)^3-a^3+3(a+1)a\)
\(n^2+3(a+1)a=(a+1-a)^3\)
\(n^2+3(a+1)a=1^3=1\)
\(n^2\ge0(\forall n);a\inℤ;n\inℤ\)
\(\Rightarrow a+1=0;a=0;n^2=1\)
\(\Rightarrow a=-1;a=0;n=1;n=-1\)
2^m - 2^n=2^8
\(\Rightarrow\)m-n=8
Chọn các cặp (m;n)nguyên tố cùng nhau sao cho m-n=8 và m>n
tự tìm