K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2021

a: \(=\dfrac{x+2-x-1}{\left(x+2\right)\left(x+1\right)}=\dfrac{1}{\left(x+2\right)\left(x+1\right)}\)

26 tháng 7 2021

\(A=\left(2x+5\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(8x^3-12x^2+18x+20x^2-30x+45-8x^3+2=8x^2-12x+47\)

Vậy biểu thức phụ thuộc biến x 

\(B=\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)

\(=x^3+9x^2+27x+27-x^3-27x-9x^2-243=27-243=-216\)

Vậy biểu thức ko phụ thuộc biến x 

AH
Akai Haruma
Giáo viên
26 tháng 7 2021

Lời giải:
$A=(2x+5)(4x^2-6x+9)-2(4x^3-1)$

$=(2x+3)(4x^2-6x+9)+2(4x^2-6x+9)-(8x^3-2)$

$=(2x)^3+3^3+8x^2-12x+18-8x^3+2=48x^2-12x+47$ vẫn phụ thuộc  vào giá trị của biến. Bạn xem lại.

$B=(x+3)^3-(x+9)(x^2+27)$

$=x^3+9x^2+27x+27-(x^3+27x+9x^2+243)$

$=x^3+9x^2+27x+27-x^3-9x^2-27x-243$

$=-216$ không phụ thuộc vào giá trị của biến (đpcm)

8: \(=\left(x-2y\right)\cdot x\cdot\left(x+3\right)\)

9: \(=\left(5x+2\right)\left(x-3\right)-x\left(x-3\right)\)

\(=\left(x-3\right)\left(4x+2\right)\)

=2(2x+1)(x-3)

3: \(=2\left(x+2\right)\left(25x-15-x\right)\)

\(=2\left(x+2\right)\left(24x-15\right)\)

=6(x+2)(8x-5)

17 tháng 4 2016

(2x+3)(4x^2-6x+9)-2(4x^3-1)

=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2

=29

3 tháng 9 2020

Sửa đề bài 1 : k => x  P/s : đề sai r :)) 

\(A=\left(3-2x\right)3x^2-8+\left(2x+5\right)\left(3x-2\right)-20x\)

\(=9x^2-6x^3-8+6x^2-4x+15x-10-20x=15x^2-6x^3-18-9x\)

Vậy biểu thức phụ thuộc biến x 

\(B=\left(3-5x\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x+33-10x^2-55x-6x^2-14x-9x-21=-72x+12-16x^2\)

Vậy biểu thức phụ thuộc biến x 

3 tháng 9 2020

Bài 2 : 

a, \(2x\left(x-1\right)-x^2+6=0\Leftrightarrow2x^2-2x-x^2+6=0\)

\(\Leftrightarrow x^2-2x+6=0\)( vô nghiệm )

b, \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)

\(\Leftrightarrow\left(x+3\right)\left(x-3\right)-x\left(x-2\right)\left(x+2\right)=15\)

\(\Leftrightarrow x^2-9-x\left(x^2-4\right)=15\Leftrightarrow x^2-9-x^3+12=15\)

\(\Leftrightarrow-x^3+x^2-12=0\Leftrightarrow x=2\)

28 tháng 6 2017

Ta có:\(2x^2+2xy+4x+y^2+8\)

         \(=x^2+4x+4+x^2+2xy+y^2+4\)

          \(=\left(x+2\right)^2+\left(x+y\right)^2+4\)

                  Vì \(\left(x+2\right)^2\ge0;\left(x+y\right)^2\ge0\)

                           \(\Rightarrow\left(x+2\right)^2+\left(x+y\right)^2+4\ge4\)

Vậy 2x^2+2xy+4x+y^2+8>0 voi moi x,y

28 tháng 6 2017

2x^2+2xy+4x+y^2+8

 = x^2+2xy+y^2 +x^2 + 4x+4+4 

=(x+y)^2 + (x+2)^2 +4

Vì (x+y)^2 và (x+2)^2 đều >=0 

Nên (x+y)^2+(x+2)^2+4   >=  4  >0

Vậy.........n.n