K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)

b: \(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)

\(=\left(x^2y^2-9\right)\left(x^2y^2-7\right)\)

\(=\left(xy-3\right)\left(xy+3\right)\left(x^2y^2-7\right)\)

c: \(=x^2-8x+x-8\)

\(=x\left(x-8\right)+\left(x-8\right)\)

\(=\left(x-8\right)\left(x+1\right)\)

9 tháng 10 2023

\(a,xy+y^2-x-y\)

\(=\left(xy+y^2\right)-\left(x+y\right)\)

\(=y\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(y-1\right)\)

\(---\)

\(b,\left(x^2y^2-8\right)^2-1\)

\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)

\(=\left[\left(xy\right)^2-9\right]\left(x^2y^2-7\right)\)

\(=\left(xy-3\right)\left(xy+3\right)\left(x^2y^2-7\right)\)

\(---\)

\(c,x^2-7x-8\)

\(=x^2+x-8x-8\)

\(=\left(x^2+x\right)-\left(8x+8\right)\)

\(=x\left(x+1\right)-8\left(x+1\right)\)

\(=\left(x+1\right)\left(x-8\right)\)

\(Toru\)

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

NV
10 tháng 1 2022

Kiểm tra lại \(x^2-2y+y^2...\) hay \(x^2-2xy+y^2...\)

b) Ta có: \(x^3-x^2y-xy^2+y^3\)

\(=\left(x^3+y^3\right)-\left(x^2y+xy^2\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)^2\)

10 tháng 1 2023

Bài `1:`

`a)3x^3+6x^2=3x^2(x+2)`

`b)x^2-y^2-2x+2y=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)`

Bài `2:`

`a)(2x-1)^2-25=0`

`<=>(2x-1-5)(2x-1+5)=0`

`<=>(2x-6)(2x+4)=0`

`<=>[(x=3),(x=-2):}`

`b)Q.(x^2+3x+1)=x^3+2x^2-2x-1`

`<=>Q=[x^3+2x^2-2x-1]/[x^2+3x+1]`

`<=>Q=[x^3-x^2+3x^2-3x+x-1]/[x^2+3x+1]`

`<=>Q=[(x-1)(x^2+3x+1)]/[x^2+3x+1]=x-1`

Câu 1: A

Câu 21: A

 

1 tháng 11 2021

\(16,A\\ 17,C\\ 18,A\\ 19,C\\ 20,A\\ 21,A\)

NV
23 tháng 10 2021

a.

\(2x^3-x^2y+x^2+y^2-2xy-y=0\)

\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)

Thế vào pt đầu:

\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

 

NV
23 tháng 10 2021

b.

\(x^2-2xy+x=-y\)

Thế vào \(y^2\) ở pt dưới:

\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)

\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)

\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)

\(\Leftrightarrow-2y+4y^2-8y+4=0\)

\(\Leftrightarrow...\)