K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

18 tháng 3 2023

đề có thiếu gì ko bn

18 tháng 3 2023

có viết các cặp tam giác đồng dạng và giải thích ạ

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

Lời giải:

Áp dụng hệ thức lượng trong tam giác vuông:

$AB^2=BH.BC$

$AC^2=CH.CB$

$\Rightarrow \frac{9}{16}=\frac{BH}{CH}=(\frac{AB}{AC})^2$

$\Rightarrow \frac{AB}{AC}=\frac{3}{4}$

$AC=\frac{4}{3}AB=\frac{4}{3}.24=32$ (cm)

$BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40$ (cm)

$AH=\frac{AB.AC}{BC}=\frac{24.32}{40}=19,2$ (cm)

 

 

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

Hình vẽ:

3 tháng 10 2021

Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:

\(AB^2=BH.BC\)

\(\Rightarrow15^2=BH\left(BH+HC\right)\)

\(\Rightarrow225=BH\left(BH+16\right)\)

\(\Rightarrow BH^2+16BH-225=0\)

\(\Rightarrow BH=9\)

Áp dụng HTL:

\(AC^2=HC.BC\)

\(\Rightarrow AC=\sqrt{16\left(16+9\right)}=20\)

5 tháng 7 2021

Ta có: \(\dfrac{HB}{HC}=\dfrac{9}{16}\Rightarrow HB=\dfrac{9}{16}HC\)

Ta có: \(AB^2=BH.BC=BH\left(BH+HC\right)=\dfrac{9}{16}HC\left(\dfrac{9}{16}HC+HC\right)\)

\(=\dfrac{9}{16}HC.\dfrac{25}{16}HC=\dfrac{225}{256}HC^2\)

\(\Rightarrow HC^2=\dfrac{256AB^2}{225}=\dfrac{16384}{25}\Rightarrow HC=\dfrac{128}{5}\left(cm\right)\)

\(\Rightarrow HB=\dfrac{72}{5}\Rightarrow BC=\dfrac{128+72}{5}=40\left(cm\right)\)

\(\Rightarrow AC=\sqrt{BC ^2-AB^2}=\sqrt{40^2-24^2}=32\)

Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{24.32}{40}=\dfrac{96}{5}\left(cm\right)\)

NV
5 tháng 7 2021

\(\dfrac{HB}{HC}=\dfrac{9}{16}\Rightarrow HC=\dfrac{16}{9}HB\)

Áp dụng hệ thức lượng:

\(AB^2=HB.BC=HB\left(HB+HC\right)\)

\(\Leftrightarrow24^2=HB.\left(HB+\dfrac{16}{9}HB\right)\)

\(\Rightarrow HB^2=\dfrac{5184}{25}\Rightarrow HB=\dfrac{72}{5}\left(cm\right)\)

\(HC=\dfrac{16}{9}HB=\dfrac{128}{5}\) (cm)

\(BC=HB+HC=40\) (cm)

\(AC=\sqrt{BC^2-AB^2}=32\) (cm)

\(AH=\dfrac{AB.AC}{BC}=\dfrac{96}{5}\left(cm\right)\)

Bài 1:

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=5^2-3^2=16\)

hay AC=4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1.8\left(cm\right)\\CH=\dfrac{4^2}{5}=3.2\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4cm

Bài 2: 

Ta có: BC=HB+HC

nên BC=3,6+6,4

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3.6\cdot10=36\\AC^2=6.4\cdot10=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)

hay AH=4,8cm

a: CH=16^2/25=10,24cm

BC=25+10,24=35,24cm

AB=căn 16^2+25^2=căn 881(cm)

b: AH=căn 12^2-6^2=6căn 3cm

CH=AH^2/HB=108/6=18cm

BC=6+18=24cm

c: BC=căn 5^2+25^2=5 căn 26cm

BH=5^2/5căn 26=5/căn 26(cm)

CH=5căn 26-5/căn 26=24,51(cm)

d: AB=căn 16^2-14^2=2căn15(cm)

e: AB=căn 2*8=4cm

AC=căn 6*8=4căn 3(cm)