K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

\(A=x^2+4x^4\)

\(\Rightarrow A=\left(2x^2\right)^2+4x^3+\left(x\right)^2-4x^3\)

\(\Rightarrow\left(2x^2+x\right)^2-4x^3\)

=> Ko là số chính phương

\(B=y^2-12y+36\)

\(B=y^2-2.6y+6^2\)

\(\Rightarrow B=\left(y-6\right)^2\)

=> Là số chính phương

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

a)

\(5x(x-2y)+2(2y-x)^2=5x(x-2y)+2(x-2y)^2\)

\(=(x-2y)[5x+2(x-2y)]=(x-2y)(7x-4y)\)

b)

\(7x(y-4)^2-(4-y)^3=7x(y-4)^2+(y-4)^3=(y-4)^2(7x+y-4)\)

c)

\((4x-8)(x^2+6)-(4x-8)(x+7)+9(8-4x)\)

\(=(4x-8)(x^2+6)-(4x-8)(x+7)-9(4x-8)\)

\(=(4x-8)[(x^2+6)-(x+7)-9]=(4x-8)(x^2-x-10)=4(x-2)(x^2-x-10)\)

d)

\(x^2-xz-9y^2+3yz=(x^2-9y^2)-(xz-3yz)\)

\(=(x-3y)(x+3y)-z(x-3y)=(x-3y)(x+3y-z)\)

e)

\(x^2(x^2-6)-x^2+9=x^4-7x^2+9=(x^4-6x^2+9)-x^2\)

\(=(x^2-3)^2-x^2=(x^2-3-x)(x^2-3+x)\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2019

a)

\(5x(x-2y)+2(2y-x)^2=5x(x-2y)+2(x-2y)^2\)

\(=(x-2y)[5x+2(x-2y)]=(x-2y)(7x-4y)\)

b)

\(7x(y-4)^2-(4-y)^3=7x(y-4)^2+(y-4)^3=(y-4)^2(7x+y-4)\)

c)

\((4x-8)(x^2+6)-(4x-8)(x+7)+9(8-4x)\)

\(=(4x-8)(x^2+6)-(4x-8)(x+7)-9(4x-8)\)

\(=(4x-8)[(x^2+6)-(x+7)-9]=(4x-8)(x^2-x-10)=4(x-2)(x^2-x-10)\)

d)

\(x^2-xz-9y^2+3yz=(x^2-9y^2)-(xz-3yz)\)

\(=(x-3y)(x+3y)-z(x-3y)=(x-3y)(x+3y-z)\)

e)

\(x^2(x^2-6)-x^2+9=x^4-7x^2+9=(x^4-6x^2+9)-x^2\)

\(=(x^2-3)^2-x^2=(x^2-3-x)(x^2-3+x)\)

31 tháng 10 2020

a) Đặt: x = a- b; y = b - c ; z = c- a 

Ta có: x + y + z = 0 

=> \(A=x^3+y^3+z^3=3xyz+\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=3xyz\)

=> \(A=3xyz=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

b) Đặt: \(a=x^2-2x\) 

Ta có: \(B=a\left(a-1\right)-6=a^2-a-6=\left(a+2\right)\left(a-3\right)=\left(x^2-2x+2\right)\left(x^2-2x-3\right)\)

\(=\left(x^2-2x+2\right)\left(x+1\right)\left(x-3\right)\)

d) \(D=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)

Đặt: \(x^2-8=t\)

Ta có: \(D=4\left(t+2x\right)\left(t+7x\right)+25x^2\)

\(=4t^2+36xt+81x^2=\left(2t+9x\right)^2\)

\(=\left(2x^2+9x-16\right)^2\)

16 tháng 5 2018

d)\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=7\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Mà x,y nguyên dương\(\Rightarrow x-y-1< x+y+3\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y-1=1\\x+y+3=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=-7\\x+y+3=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

17 tháng 5 2018

Mạn phép ko chép lại đề :

b) \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x^2}-x^2-2-\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)

\(8\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\) ( x # 0)

\(8\left(x^2+2+\dfrac{1}{x^2}-x^2-\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)

⇔ ( x + 4)2 = 16

⇔ x2 + 8x + 16 = 16

⇔ x( x + 8) = 0

⇔ x = 0 ( KTM) hoặc : x = - 8 ( TM)

KL.....