- Hỏi số tự nhiên n để n2 + n + 1 chia hết cho 1985 có tồn tại ko
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk chỉ làm câu b thôi
n^2 + n + 2
= n(n+1) + 2
giả sử n^2 + n +2 chia hết cho 5
=> n(n+1) chia hết cho5 ( vì 2 ko chia hết cho 5 )
mà n, n+1 là 2 số tự nhiên liên tiếp có thể có 1 số chia hết cho 5
Vd n= 4 và n+1 = 5
vậy vẫn tồn tại số tự nhiên n để n^2 + n + 2 chia hết cho 5
a) số 1 trên mũ hay ở dứoi
b) n^2+n=n(n+1) không có tận cùng là 3 hoặc 8 => n^2+n+2 không chia hết cho 5
c)
số chữ số 2^100=a
số chữ số 5^100=b
\(10^{a-1}<2^{100}<10^a\)
\(10^{b-1}<5^{100}<10^b\)
Nhân vế với vế
\(10^{a+b-2}<\left(2.5\right)^{100}<10^{a+b}\)
a+b-2<100<a+b
=> 100<a+b<102
a, b nguyên=> a+b=101
ds: 101
không vì A=n^2+n+1 nên A luôn là 1 số lẻ
suy ra A không chia hết cho 2 nên A không chia hết cho bội của 2 là 2010
Không Vì A luôn là số lẻ => không chia hết cho 2=> không chia hết cho 2010
Ta có : \(n^2+n=n\left(n+1\right)\)
Vì n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên n ( n + 1 ) có tận cùng là 0 , 2 hoặc 6
=> n ( n + 1 ) + 1 có tận cùng là 1 , 3 hoặc 7
=> n ( n + 1 ) +1 không chia hết cho 5
hay \(n^2+n+1\) không chia hết cho 5
Mà 1985 chia hết cho 5
=> \(n^2+n+1\)không chia hết cho 1985
Vậy không tồn tại stn n thỏa mãn đề bài.
TK mình ik lần sau mk giải tiếp cho ^_^