K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

Ta có : \(n^2+n=n\left(n+1\right)\)

Vì n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên n ( n + 1 ) có tận cùng là 0 , 2 hoặc 6 

=> n ( n + 1 ) + 1 có tận cùng là 1 , 3 hoặc 7

=> n ( n + 1 ) +1 không chia hết cho 5

hay \(n^2+n+1\) không chia hết cho 5

Mà 1985 chia hết cho 5 

=> \(n^2+n+1\)không chia hết cho 1985

Vậy không tồn tại stn n thỏa mãn đề bài.

TK mình ik lần sau mk giải tiếp cho ^_^

4 tháng 2 2017

mk chỉ làm câu b thôi 

n^2 + n + 2 

= n(n+1) + 2 

giả sử n^2 + n +2 chia hết cho 5 

=> n(n+1) chia hết cho5  ( vì 2 ko chia hết cho 5 ) 

mà n, n+1 là 2 số tự nhiên liên tiếp có thể có 1 số chia hết cho 5 

Vd  n= 4 và n+1 = 5 

vậy vẫn tồn tại số tự nhiên n để n^2 + n + 2 chia hết cho 5

4 tháng 2 2017

a) số 1 trên mũ hay ở dứoi

b) n^2+n=n(n+1)  không có tận cùng là 3 hoặc 8 => n^2+n+2 không chia hết cho 5

c)

số chữ số 2^100=a 

số chữ số 5^100=b

\(10^{a-1}<2^{100}<10^a\)

\(10^{b-1}<5^{100}<10^b\)

Nhân vế với vế

\(10^{a+b-2}<\left(2.5\right)^{100}<10^{a+b}\)

a+b-2<100<a+b

=> 100<a+b<102

a, b nguyên=> a+b=101

ds: 101

22 tháng 2 2017

Bạn đi thi Toán Violympic à??

26 tháng 12 2016

không vì A=n^2+n+1 nên A luôn là 1 số lẻ

suy ra A không chia hết cho 2 nên A không chia hết cho bội của 2 là 2010

26 tháng 12 2016

Không Vì A luôn là số lẻ => không chia hết cho 2=> không chia hết cho 2010

2 tháng 2 2017

ai giúp mik với