\(M=\frac{1}{2^2}+...+\frac{1}{1990^2}\)
C/M : M < \(\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(CM:\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}+\frac{1}{2018^2}< \frac{3}{4}\)
\(=\frac{1}{2^2+3^2+4^2+...+2017^2+2018^2}\)
\(=\frac{1}{4044}\)
\(\Rightarrow\frac{1}{4044}< \frac{3}{4}\)
P/s: Ko chắc đâu nhé
\(\frac{1}{4}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}< \frac{1}{4}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2017\cdot2018}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2018}\)
\(=\frac{3}{4}-\frac{1}{2018}< \frac{3}{4}\)
\(=>\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2018^2}< \frac{3}{4}\)
Đặt \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}=A\)
ta có :\(\frac{1}{2^2}=\frac{1}{2\cdot2}=\frac{1}{4}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(...\)
\(\frac{1}{1990^2}=\frac{1}{1990\cdot1990}< \frac{1}{1989\cdot1990}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2\cdot3}+...+\frac{1}{1989\cdot1990}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1989}-\frac{1}{1990}\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)
\(\Rightarrow A< \frac{3}{4}\left(ĐPCM\right)\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{3}{4}\)
hk tốt #
Ta có \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{1990^2}< \frac{1}{1989.1990}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)
\(< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)
\(< \frac{1}{4}+\frac{1}{2}-\frac{1}{1990}=\frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}< \frac{3}{4}\)
\(\Rightarrow\)Bài toán được chứng minh
Bài 1:
Có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Có: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
xong bn áp dụng lên trên lm tiếp
Bài 3:
theo bđt cô si ta có:
\(\sqrt{\frac{b+c}{a}\cdot1}\le\left(\frac{b+c}{a}+1\right):2=\frac{b+c+a}{2a}\)
=> \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\) (1)
Tương tự ta có :
\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\) (2)
\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\) (3)
Cộng vế vs vế (1)(2)(3) ta có:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a+2b+2c}{a+b+c}=2\)
=>1/2^2+...+1/1990^2<1/1990<3/4
Chứng minh rằng
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}\) < \(\frac{3}{4}\)
b)
program hotrotinhoc;
var s: real;
i,n: byte;
function t(x: byte): longint;
var j: byte;
t1: longint;
begin
t1:=1;
for j:=1 to x do
t1:=t1*j;
t1:=t;
end;
begin
readln(n);
s:=0;
for i:=1 to n do
s:=s+1/t(i);
write(s:1:2);
readln
end.
c) Đề em ghi sai rồi thế này với đúng :
\(T=1+\frac{2}{2^2}+\frac{3}{3^2}+\frac{4}{4^2}+...+\frac{n}{n^2}\)
program hotrotinhoc;
var t: real;
n,i: byte;
begin
readln(n);
t:=0;
for i:=1 to n do
t:=t+i/(i*i);
write(t:1:2);
readln
end.
c) \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{1}{2}.\frac{4}{4}.\frac{6}{6}...\frac{100}{100}=\frac{1}{2}\)
Có :
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...
\(\frac{1}{1990^2}< \frac{1}{1989.1990}\)
=> \(M< \frac{1}{2^2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}\)
=> \(M< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1989}-\frac{1}{1990}\)
=> \(M< \frac{3}{4}-\frac{1}{1990}< \frac{3}{4}\)
Vậy M < 3/4