K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

\(\frac{2.3.4.5+4.6.8.10+6.9.12.15}{2.3.4.5+6.8.10.12+9.12.15.18}\)

\(\frac{2.3.4.5+2.3.4.5.16+2.3.4.5.81}{2.3.4.5+2.3.4.5.48+2.3.4.5.243}\)

\(\frac{2.3.4.5.\left(1+16+81\right)}{2.3.4.5.\left(1+48+243\right)}\)

\(\frac{98}{292}\)

= 49/146

28 tháng 6 2018

=2.3.4.5+4.6.8.10+6.9.15/2.3.4.5+6.8.10.3.4+9.12.15.6.3

=2.3.4.5+4.6.8.10+6.9.15/3.(2.3.4.5+9.12.15.6)

=1/3

chúc bạn học tốt !

9 tháng 9 2018

\(A=\dfrac{2.3.4.5+4.6.8.10+6.9.12.15}{2.3.4.5+6.8.10.12+9.12.15.18}\)

\(A=\dfrac{2.3.4.5+2.2.2.3.2.4.2.5.+3.2.3.3.3.4.3.5}{2.3.4.5+2.2.2.3.2.4.2.5+3.3.3.4.3.5.3.6}\)

\(A=\dfrac{2.3.4.5+2^4.2.3.4.5.+3^4.2.3.4.5}{2.3.4.5+2^4.2.3.4.5+3^4.3.4.5.6}\)

\(A=\dfrac{\left(1+2^4+3^4\right)2.3.4.5}{\left(2+2^5+3^4.6\right)3.4.5}\)

\(A=\dfrac{\left(1+2^4+3^4\right)2}{\left(1+2^4+3^5\right).2}\)

\(A=\dfrac{1+2^4+3^4}{1+2^4+3^5}=\dfrac{1+16+81}{1+16+243}=\dfrac{49}{130}\)

28 tháng 6 2018

\(\dfrac{2.3.4.5+4.6.8.10+6.9.12.15}{2.3.4.5+6.8.10.12+9.12.15.18}\)

\(=\dfrac{4.6.8.10+6.9.12.15}{6.8.10.12+9.12.15.18}\)

\(=\dfrac{1}{3}\)

Kết quả là \(\dfrac{1}{3}\)vì: \(6.8.10.12:4.6.8.10=12:4=3\)

\(9.12.15.18:6.9.12.15=18:6=3\)

Khi cộng vào thì thương không thay đổi và bằng \(\dfrac{1}{3}\)

20 tháng 8 2016

Đặt tổng trên là A có:

     A =  2.4.6.8 +..+ 100.102.104.106 
10A = 2.4.6.8.(10- 0) + 4.6.8.10.(12-2) +....+100.102.104.106.(108-98) 
10A= 2.4.6.8.10 + 4.6.8.10.12 -2.4.6.8.10 +....+ 100.102.104.106.108 -98.100.102.104.106 
10A= 100.102.104.106.108 

10 tháng 6 2016

2 x 3 x 4 x 5

= (2 x 5) x (3 x 4)

= 10 x 12

= 120

13 tháng 10 2016

Đặt S=1.2.3.4+2.3.4.5+...+97.98.99.100

5S=1.2.3.4.5+2.3.4.5.5+...+97.98.99.100.5

5S=1.2.3.4.(5 - 0)+2.3.4.5.(6 - 1)+...+97.98.99.100.(101 - 96)

5S=1.2.3.4.5-0.1.2.3.4+2.3.4.5.6-1.2.3.4.5+...+97.98.99.100.101-96.97.98.99

5S=97.98.99.100.101

S=97.98.99.20.101

=>S=1901009880

13 tháng 10 2016

Đặt A = 1.2.3.4 + 2.3.4.5 + ... + 97.98.99.100

5A = 1.2.3.4.5 + 2.3.4.5.5 + ... + 97.98.99.100.5

5A = 1.2.3.4.5 + 2.3.4.( 6 - 1 ) + ... + 97.98.99.100.( 101 - 96 )

5A = 1.2.3.4.5 + 2.3.4.5.6 - 1.2.3.4.5 + ... + 97.98.99.100.101 - 96.97.98.99.100

5A = 97.98.99.100.101

A = 97.98.99.100.101 : 5

A = 97.98.20.101

A = 19202120

5 tháng 6 2016

Đặt A=1.2.3.4+2.3.4.5+...+97.98.99.100

4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4

4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)

4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100

4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101

4A=98.99.100.101

A=98.99.100.101/4 

 

5 tháng 6 2016

5A=(5-0).1.2.3.4+(6-1).2.3.4.5+...+(101-96).97.98.99.100

5A=1.2.3.4.5-0+2.3.4.5.6-1.2.3.4.5+...+97.98.99.100.101-96.97.98.99.100

5A=97.98.99.100.101=9505049400

A=1901009880

20 tháng 4 2016

B=1901009880

AH
Akai Haruma
Giáo viên
12 tháng 7 2023

Lời giải:

$A=10(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{92.93.94.95})$
$3A=10(\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+...+\frac{95-92}{92.93.94.95})$

$=10(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{92.93.94}-\frac{1}{93.94.95})$

$=10(\frac{1}{1.2.3}-\frac{1}{93.94.95})$

$A=\frac{10}{3}(\frac{1}{1.2.3}-\frac{1}{93.94.95})$

12 tháng 7 2023

\(A=\dfrac{10}{1.2.3.4}+\dfrac{10}{2.3.4.5}+...+\dfrac{10}{92.93.94.95}\)

\(A=10.\left(\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+...+\dfrac{1}{92.93.94.95}\right)\)

\(3A=10.\left(\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+...+\dfrac{3}{92.93.94.95}\right)\)

\(3A=10.\left(\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{2.3.4}+...+\dfrac{1}{92.93.94}-\dfrac{1}{93.94.95}\right)\)

\(3A=10.\left(\dfrac{1}{1.2.3}-\dfrac{1}{93.94.95}\right)\)

\(3A=10.\left(\dfrac{138415-1}{93.94.95}\right)=\dfrac{1384140}{93.94.95}\)

\(A=\dfrac{461380}{93.94.95}=\dfrac{46138}{93.47.19}=\dfrac{46138}{83049}\)

\(\)

5 tháng 8 2023

\(A=\dfrac{1}{1\cdot2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4\cdot5}+\dfrac{1}{3\cdot4\cdot5\cdot6}+....+\dfrac{1}{9\cdot10\cdot11\cdot12}\)

\(3A=\dfrac{3}{1\cdot2\cdot3\cdot4}+\dfrac{3}{2\cdot3\cdot4\cdot5}+\dfrac{3}{3\cdot4\cdot5\cdot6}+...+\dfrac{3}{9\cdot10\cdot11\cdot12}\)

\(3A=\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4}-\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{9\cdot10\cdot11}-\dfrac{1}{10\cdot11\cdot12}\)\(3A=\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{10\cdot11\cdot12}\)

\(A=\dfrac{1}{2}-\dfrac{1}{440}\)

\(A=\dfrac{219}{440}\)