K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

\(D=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+....+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)

\(\Rightarrow2D=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+....+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)

\(\Rightarrow2D+D=1-\frac{1}{2^{100}}\)

\(\Rightarrow3D=1-\frac{1}{2^{100}}\)

\(\Rightarrow D=\frac{1-\frac{1}{2^{100}}}{3}\)

\(\Rightarrow D=\frac{1}{3}-\frac{1}{3.2^{100}}\)

Chúc bạn hok tốt!

6 tháng 5 2021

       A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101

=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4

=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)

=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101

=> 4A = 99*100*101*102

=> 4A = 101989800

=>   A = 25497450

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

6 tháng 1 2016

C=(-1)+(-1)+...+(-1)

C= (-1).50

C= -50

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

31 tháng 8 2020

Giúp mik vs ạ.Mik đag cần

14 tháng 5 2022

-Quy luật: Nhân mỗi vế của đẳng thức cho số thích hợp để tạo ra đẳng thức mới, khi cộng (hoặc trừ) mỗi vế của mỗi đẳng thức thì sẽ rút gọn bớt.

a) \(A=2-2^2+2^3-2^4+...+2^{99}-2^{100}\)

\(\Rightarrow2A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}\)

\(\Rightarrow2A+A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}+\left(2-2^2+2^3-2^4+...+2^{99}-2^{100}\right)\)

\(\Rightarrow A=-2^{101}+2\)

b,c) làm tương tự. 

d) \(D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow3D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D-D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow2D=3+\dfrac{1}{3^{100}}\)

\(\Rightarrow2D=\dfrac{3^{101}+1}{3^{100}}\Rightarrow D=\dfrac{3^{101}+1}{2.3^{100}}\)

e) làm tương tự nhưng đổi thành cộng.

5 tháng 2 2017

mai cho chép tao cho thằng vt mựn sách mất ùi bài này dài vừa khó quên mẹ