Tính nhanh:
S= \(\frac{8}{10.13}\)+\(\frac{8}{13.16}\)+\(\frac{8}{16.19}\)+...+\(\frac{8}{307.310}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TÌM X
\(\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+...+\frac{1}{X.\left(X+3\right)}=\frac{1}{8}\)
\(A=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(A=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)
A=3/10.13 +3/13.16+ 3/16.19+....+3/58.61
A=1/10.13+1/13.16+1/16.19+.....+1/58.61
A=1/10- 1/13+ 1/13- 1/16+ 1/16- 1/19+...+1/58 –1/61
A=1/10 – 1/61
A= 61/610 – 10/610
A= 51/610
Mình giải xong rồi k nhá?
\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}\)
\(A=\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{16}-\frac{1}{19}\right)\)
\(A=\frac{1}{3}\cdot\left(1-\frac{1}{19}\right)\)
\(A=\frac{1}{3}\cdot\frac{18}{19}=\frac{6}{19}\)
\(B=\frac{1}{32}+\frac{1}{96}+\frac{1}{192}+\frac{1}{320}+\frac{1}{480}\)
\(B=\frac{1}{4\cdot8}+\frac{1}{8\cdot12}+\frac{1}{12\cdot16}+\frac{1}{16\cdot20}+\frac{1}{20\cdot24}\)
\(B=\frac{1}{4}\cdot\left(\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+\frac{1}{12}-\frac{1}{16}+\frac{1}{16}-\frac{1}{20}+\frac{1}{20}-\frac{1}{24}\right)\)
\(B=\frac{1}{4}\cdot\left(\frac{1}{4}-\frac{1}{24}\right)\)
\(B=\frac{1}{4}\cdot\frac{5}{24}=\frac{5}{96}\)
\(A=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}\)
\(A=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{16}-\frac{1}{19}\right)\)
\(A=\frac{1}{3}\left(1-\frac{1}{19}\right)\)
\(A=\frac{1}{3}.\frac{18}{19}\)
\(A=\frac{6}{19}\)
\(B=\frac{1}{32}+\frac{1}{96}+\frac{1}{192}+\frac{1}{320}+\frac{1}{480}\)
\(B=\frac{1}{4.8}+\frac{1}{8.12}+\frac{1}{12.16}+\frac{1}{16.20}+\frac{1}{20.24}\)
\(B=\frac{1}{4}\left(\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+...+\frac{1}{20}-\frac{1}{24}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{4}-\frac{1}{24}\right)\)
\(B=\frac{1}{2}.\frac{5}{24}\)
\(B=\frac{5}{48}\)
đây là toán lớp 5 cơ mà
a)A=\(\frac{1}{1x4}\)+\(\frac{1}{4x7}\)+...+\(\frac{1}{16x19}\)
A=\(\frac{1}{3}\)x3x(\(\frac{1}{1.4}\)+\(\frac{1}{4.7}\)+.......+\(\frac{1}{16.19}\)
A=\(\frac{1}{3}\)x(\(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+............+\(\frac{3}{16.19}\))
A=\(\frac{1}{3}\)x(1-1/4+1/4-1/7+......+1/13-1/16+1/16-1/19)
A=\(\frac{1}{3}\)x(1-\(\frac{1}{19}\))
A=\(\frac{1}{3}\)x\(\frac{18}{19}\)
A=\(\frac{6}{19}\)
\(\frac{3x}{4.7}+\frac{3x}{7.10}+\frac{3x}{10.13}+\frac{3x}{13.16}+...+\frac{3x}{19.22}=\frac{-5}{88}\)
\(\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+...+\frac{3}{19.22}\right)x=\frac{-5}{88}\)
\(\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{19}-\frac{1}{22}\right)x=\frac{-5}{88}\)
\(\left[\frac{1}{4}+\left(\frac{1}{7}-\frac{1}{7}\right)+\left(\frac{1}{10}-\frac{1}{10}\right)+...+\left(\frac{1}{19}-\frac{1}{19}\right)-\frac{1}{22}\right]x=\frac{-5}{88}\)
\(\left[\frac{1}{4}-\frac{1}{22}\right]x=\frac{-5}{88}\)
\(\frac{9}{44}x=\frac{-5}{88}\)
\(x=\frac{-5}{88}:\frac{9}{44}\)
\(x=\frac{-5}{18}\)
~ Hok tốt ~
#)Giải :
Đặt \(A=\frac{3x}{2.7}+\frac{3x}{7.10}+\frac{3x}{10.13}+\frac{3x}{13.16}+...+\frac{3x}{19.22}=-\frac{5}{88}\)
\(A=\frac{3x}{2}+\frac{3x}{7}-\frac{3x}{7}+\frac{3x}{10}-\frac{3x}{10}+\frac{3x}{13}-\frac{3x}{13}+\frac{3x}{16}-...-\frac{3x}{19}+\frac{3x}{22}=-\frac{5}{88}\)
\(A=\frac{3x}{2}+0+0+0+...+0+\frac{3x}{22}=-\frac{5}{88}\)
\(A=\frac{3x}{2}+\frac{3x}{22}=-\frac{5}{88}\)
\(3x:\left(2+22\right)=-\frac{5}{88}\)
\(3x:24=-\frac{5}{88}\)
\(3x=-\frac{5}{88}.24\)
\(3x=-\frac{7}{11}\)
\(x=-\frac{7}{11}:3\)
\(x=-\frac{7}{33}\)
#~Will~be~Pens~#
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+.....+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
Ta thấy :
\(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)
\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)
\(.........\)
\(\frac{3}{97.100}=\frac{100-97}{97.100}=\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow A=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)=3\cdot\frac{99}{100}=\frac{297}{100}\)
đáp án = \(\frac{297}{100}\)
đúng không?
kết bạn với mh nha
\(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+...+\frac{3^2}{97.100}\)
\(=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}\right)\)
\(=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}\)
\(S = \frac{8}{10.13}+\frac{8}{13.16}+\frac{8}{16.19}+..+\frac{8}{307.310}\)
\(=\frac{8}{3}(\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-....+\frac{1}{307}-\frac{1}{310})\)
\(=\frac{8}{3}(\frac{1}{10}-\frac{1}{310})\)
\(=\frac{8}{3}.\frac{30}{310}\)
\(=\frac{8}{3}.\frac{3}{31}\)
\(=\frac{24}{91}\)