Tính Tổng
B=1/2+1/2^2+...+1/2^98+1/2^99
1/2 là 1 phần 2 nha
Tìm x thuộc Q
|3x+5|=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{1}{2}B=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
\(\Leftrightarrow-\dfrac{1}{2}B=\dfrac{1}{2^{100}}-\dfrac{1}{2}\)
hay \(B=\dfrac{-1}{2^{99}}+1\)
b: |3x+5|=10
=>3x+5=10 hoặc 3x+5=-10
=>3x=5 hoặc 3x=-15
=>x=-5 hoặc x=5/3
Bài 1:
a) [ (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15) phần 1/2 - 1/3 + 1/4 - 1/5 ] : (1/4 - 1/6)
= [ (1/6 : 1/6) + (1/10 : 1/10) - (1/15 : 1/15) phần 30/60 - 20/60 + 15/60 - 12/60 ] : (3/12 - 2/12)
= [ 1 + 1 - 1 phần 13/60 ] : 1/12
= [ 1 : 13/60 ] x 12
= 60/13 x 12
=720/ 13
b) (3/20 + 1/2 - 1/15) x 12/49 phần 3 và 1/3 + 2/9
= (9/60 + 30/60 - 4/60) x 12/49 phần 10/3 + 2/9
= 7/12 x 12/49 phần 30/9 + 2/9
= 1/7 : 32/9
= 1/7 x 9/32
= 9/224
2/ Đặt biểu thức trên là B.Ta có: \(B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n+1}-\frac{1}{n}=1-\frac{1}{n}< 1\forall n\ge2\) (đpcm)
5/ (không chắc,quên cách làm mọe rồi) Gọi số viên bi của Hằng là x < 88 (viên). Suy ra: Số bi xanh là:\(\frac{x}{12}\)
Số viên bi vàng: \(\frac{x}{6}\) suy ra tổng số viên bi xanh và vàng là: \(\frac{x}{6}+\frac{x}{12}=x\left(\frac{1}{6}+\frac{1}{12}\right)=x\left(\frac{2}{12}+\frac{1}{12}\right)=x.\frac{3}{12}=\frac{x}{4}\)
đặt B=1/3 + 1/3^2 + 1/3^3 +.....+ 1/3^99
=>1/3B=1/3^2 + 1/3^3 +.....+ 1/3^100
=>1/3B-B=1/3^2 + 1/3^3 +.....+ 1/3^100-1/3-1/3^2-1/3^3-...-1/3^100
=>-2/3=1/3^100-1/3
=>B=(1/3^100-1/3):(-2/3)<1/2 (vì kết quả ra số âm )
\(a.ĐKXĐ:\hept{\begin{cases}1-3x\ne0\\3x+1\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\...\\x\ge0\end{cases}}}\)
\(b,M=\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)
\(=\left(\frac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\frac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\left(\frac{3x+9x^2+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\frac{5x+3x^2}{1+3x}.\frac{1-3x}{2\left(3x^2+5\right)}\)
==>Sai đề không mem
1/a,
-Ta có:
$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$
-Vậy: B<A
b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$
$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$
$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$
$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$
$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$
*Ý 1 :Áp dụng công thức tính nhanh dãy phân số, ta làm như sau:
Lấy 2.B như sau:
\(2.B=2.\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow2.B=2.\frac{1}{2}+2.\frac{1}{2^2}+...+2.\frac{1}{2^{98}}+2.\frac{1}{2^{99}}\)
\(\Leftrightarrow2.B=1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
Ta thấy: \(2.B\)và \(B\)cùng có \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
Nên lấy \(2.B-B\)ta sẽ có:
\(\Rightarrow2.B-B=\left(1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow B=1-\frac{1}{2^{99}}\)
Vậy tổng \(B=1-\frac{1}{2^{99}}.\)
* Ý 2:\(\left|3x+5\right|=10\)
\(\Rightarrow\orbr{\begin{cases}3x+5=10\\3x+5=-10\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-5\end{cases}}}\)
Vậy \(x\in\left\{-5;\frac{5}{3}\right\}.\)