Tìm GTLN của P= \(\frac{x}{\left(x+10\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(x\ne-10\)
Xét x < 0 thì
\(\frac{x}{\left(x+10\right)^2}< 0\)(1)
Xét x \(\ge0\)
Ta đặt \(A=\frac{\left(x+10\right)^2}{x}\)
Để cho cái ban đầu lớn nhất thì A phải bé nhất
\(A=\frac{\left(x+10\right)^2}{x}=\frac{x^2+20x+100}{x}=x+20+\frac{100}{x}\)
\(\ge20+2.\sqrt{x}.\sqrt{\frac{100}{x}}=20+20=40\)
GTNN của A = 40
\(\Rightarrow\)GTLN = \(\frac{1}{40}\)(2)
Từ (1) và (2)
\(\Rightarrow\)GTLN = \(\frac{1}{40}\)tại x = 10
bạn bui le anh kia. người ta ko biết làm thì kệ người ta chứ. tự nhiên đi bảo người ta là bị chập mạch. nếu bạn là tôi, bạn bị người khác nói là bị chập mạnh thì bạn thấy thế nào?
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
A, \(C=\left(x+2\right)^2+\left(\frac{y}{5}\right)^2-10\)
mà \(\left(x+2\right)^2\ge0,\left(\frac{y}{5}\right)^2\ge0\)
\(C=\left(x+2\right)^2+\left(\frac{y}{5}\right)^2-10\ge-10\)
Vậy C đạt GTNN là -10 khi \(\left(x+2\right)^2=0và\left(\frac{y}{5}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=0\end{cases}}\)
B, Vì \(4>0\)và\(\left(2x-3\right)^2+5>0\)
Nên \(D=\frac{4}{\left(2x-3\right)^2+5}\)có GTLN khi (2x-3)2+5 đạt GTNN
\(\left(2x-3\right)^2+5\ge5\)
\(\Rightarrow\left(2x-3\right)^2+5\)có GTNN là 5 khi 2x-3=0 => x=3/2
Thay vào D ta có: \(D=\frac{4}{5}\)
Vâỵ \(D_{max}=\frac{4}{5}\)khi\(x=\frac{3}{2}\)
\(ĐKXĐ:x\ne0;x\ne\pm2\)
a) \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(\Leftrightarrow M=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)
\(\Leftrightarrow M=\frac{3x^2-6x\left(x+2\right)+3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)
\(\Leftrightarrow M=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(\Leftrightarrow M=\frac{-18x\left(x+2\right)}{18x\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow M=-\frac{1}{x-2}\)
\(\Leftrightarrow M=\frac{1}{2-x}\)
b) Để M đạt giá trị lớn nhất
\(\Leftrightarrow2-x\)đạt giá trị nhỏ nhất
\(\Leftrightarrow x\)đạt giá trị lớn nhất
Vậy để M đạt giá trị lớn nhất thì x phải đạt giá trị lớn nhất \(\left(x\inℤ\right)\)
玉明, bạn làm sai rồi. Dấu ngoặc vuông là dấu phần nguyên không phải dấu ngoặc thường
Đặt \(t=\frac{1}{x+10}\Rightarrow x=\frac{1}{t}-10\)
Ta có: \(P=\frac{x}{\left(x+10\right)^2}=x\cdot\frac{1}{\left(x+10\right)^2}=\left(\frac{1}{t}-10\right)t^2=-10t^2+t\)
\(=-10\left(t^2-2t\cdot\frac{1}{20}t+\frac{1}{400}\right)+\frac{1}{40}\)
\(=-10\left(t-\frac{1}{10}\right)^2+\frac{1}{40}\)
Vì \(\left(t-\frac{1}{10}\right)^2\ge0\Rightarrow-10\left(t-\frac{1}{10}\right)^2\le0\Rightarrow P=-10\left(t-\frac{1}{10}\right)^2+\frac{1}{40}\le\frac{1}{40}\)
Dấu "=" xảy ra khi \(t-\frac{1}{10}=0\Leftrightarrow t=\frac{1}{10}\Leftrightarrow x=0\)
Vậy \(B_{max}=\frac{1}{40}\) khi x = 0
Làm lại
Đặt \(t=\frac{1}{x+10}\Rightarrow x=\frac{1}{t}-10\)
Khi đó \(P=\left(\frac{1}{t}-10\right)t^2=-10t^2+t=-10\left(t^2-2t\cdot\frac{1}{20}+\frac{1}{40}\right)+\frac{1}{40}\)
\(=-10\left(t-\frac{1}{20}\right)^2+\frac{1}{40}\le\frac{1}{40}\)
Dấu "=" xảy ra khi \(t=\frac{1}{20}\Leftrightarrow x=10\)
Vậy Bmax=1/40 khi x=10