K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

a) \(\Delta=169-56=113>0\)

\(\hept{\begin{cases}x_1=\frac{13+\sqrt{113}}{14}\\x_2=\frac{13-\sqrt{113}}{14}\end{cases}}\)

b)  \(\Delta=25-4.3.60< 0\)

vô nghiệm 

8 tháng 11 2015

Kết quả:

1. \(-\frac{2}{3}\)

2. \(3\)

4 tháng 4 2017

x=3;-0,5;-2

9 tháng 9 2017

\(2x^4-7x^3+9x^2-7x+2=0\)

\(\Leftrightarrow2x^4-x^3-6x^3+3x^2+6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x^4-x^3\right)-\left(6x^3-3x^2\right)+\left(6x^2-3x\right)-\left(4x-2\right)=0\)

\(\Leftrightarrow x^3\left(2x-1\right)-3x^2\left(2x-1\right)+3x\left(2x-1\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)(1)

Ta dễ thấy \(x^3-3x^2+3x-2>0\forall x\) nên để PT (1) có nghiệm \(\Leftrightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy nghiệp phương trình trên là \(S=\left\{\frac{1}{2}\right\}\)

9 tháng 9 2017

Sủa chút : \(\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left[\left(x^3-2x^2\right)+\left(-x^2+2x\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)

13 tháng 3 2020

sai đề rồi

13 tháng 3 2020

dung ma

15 tháng 2 2016

ĐK: x khác -1 và x khác 1.

\(PT\Leftrightarrow\frac{7x.\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{5x.\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x+21}{\left(x-1\right)\left(x+1\right)}=0\)

<=> 7x2 + 7x - 5x2 + 5x + x + 21 = 0

<=> 2x+ 13x + 21 = 0

<=> 2x2 + 6x + 7x + 21 = 0

<=> 2x.(x + 3) + 7.(x + 3) = 0

<=> (x + 3).(2x + 7) = 0

<=> x + 3 = 0 hoặc 2x + 7 = 0

<=> x = -3 hoặc x = -7/2

Vậy S = {-7/2; -3}.

3 tháng 11 2019

ĐK:\(x\ge3\)

PT \(\Leftrightarrow\frac{-6x}{\sqrt{x-3}+\sqrt{7x-3}}=\sqrt{5x-2}\)(nhân liên hợp)

Đến đây ta có VT < 0 với mọi \(x\ge3\) mà VP > 0. Vậy pt vô nghiệm.

1 tháng 2 2019

\(\Leftrightarrow x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^4-4x^3+4x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x^2-4x+1\right)=0\)

- Khi x - 1 = 0 thì x = 1

- Khi x + 1 = 0 thì x = -1

- Khi \(x^2-4x+1=0\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{cases}}\)

Pt có tậo nghiệm là: \(S=\left\{1;-1;\sqrt{3}+2;-\sqrt{3}+2\right\}\)