tìm x biết (3x+2).(x-1)-3(x+1)(x-2)=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-2)3+6(x+1)2-x3+12=0
\(\Rightarrow\)x3-6x2+12x-8+6(x2+2x+1)-x3+12=0
\(\Rightarrow\)x3-6x2+12x-8+6x2+12x+6-x3+12=0
\(\Rightarrow\)24x+10=0
\(\Rightarrow\)24x=-10
\(\Rightarrow\)x=\(\dfrac{-10}{24}=\dfrac{-5}{12}\)
b)(x-5)(x+5)-(x+3)2+3(x-2)2=(x+1)2-(x-4)(x+4)+3x2
\(\Rightarrow\)x2-25-(x2+6x+9)+3(x2-4x+4)=x2+2x+1-(x2-16)+3x2
\(\Rightarrow\)x2-25-x2-6x-9+3x2-12x+12=x2+2x+1-x2+16+3x2
\(\Rightarrow\)3x2-18x-22=3x2+2x+17
\(\Rightarrow\)3x2-18x-22-3x2-2x-17=0
\(\Rightarrow\)-20x-39=0
\(\Rightarrow\)-20x=39
\(\Rightarrow\)x=\(-\dfrac{39}{20}\)
1.
a) \(=x^2-6x+9+3x^2-15x=4x^2-21x+9\)
b) \(=9x^2+12x+4-x^2+9=8x^2+12x+13\)
2.
a) \(\Leftrightarrow x^2+8x+16-x^2+4-5=0\\ \Leftrightarrow8x=-15\\ \Leftrightarrow x=-\dfrac{15}{8}\)
b) \(\Leftrightarrow9x^2-6x+1-8x^2+12x-2x+3-5-x^2=0\\ \Leftrightarrow4x=1\\ \Leftrightarrow x=\dfrac{1}{4}\)
(1-3x2)-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)2
⇒1-3x2-(9x2+x-18x-2)=9x2-16-9(x2+6x+9)
⇒1-3x2-(9x2-17x-2)= -56x-97
⇒1-3x2-9x2+17x+2=-56x-97
⇒3-12x2+17x=-56x-97
⇒3-12x2+17x+56x+97=0
⇒-12x2+73x+100=0
⇒-(12x2-73x-100)=0
a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)
\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)
\(\Leftrightarrow24x=-13\)
hay \(x=-\dfrac{13}{24}\)
1/4 - 5/2 x |3x - 1/5|=2/3 x |3x - 1/5|- 2/3
Tương đương với 1/4+2/3 = 2/3 x l3x - 1/5l + 5/2 x l3x-1/5l
11/12 = l3x - 1/5l x (2/3 + 5/2)
11/12 = l3x -1/5 l x 19/6
=> l3x - 1/5l = 11/12 : 19/6 = 11/38
Xét 2 trường hợp:
+ 3x - 1/5 = 11/38 => 3x = 11/38 + 1/5 = 93/190 => x = 93/190 : 3 = 31/190
+ 3x - 1/5 = -11/38 => 3x = -11/38 + 1/5 = -17/190 => x = -17/190 : 3 = -17/570
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
\(\left(3x+2\right)\left(x-1\right)-3\left(x+1\right)\left(x-2\right)=4\)
\(\Rightarrow\left(3x+3-1\right)\left(x-1\right)-3\left(x+1\right)\left(x-1-1\right)=4\)
\(\Rightarrow\left(3x+3\right)\left(x-1\right)-\left(x-1\right)-3\left(x+1\right)\left(x-1\right)+3\left(x+1\right)=4\)
\(=3\left(x+1\right)\left(x-1\right)-3\left(x+1\right)\left(x-1\right)+3x+3-x+1=4\)
\(\Rightarrow2x+4=4\Rightarrow2x=0\Rightarrow x=0\)
\(\left(3x+2\right).\left(x-1\right)-3.\left(x+1\right).\left(x-2\right)=4\Leftrightarrow3x^2-x-2-3.\left(x^2-x-2\right)-4=0\)
\(\Leftrightarrow3x^2-x-2-3x^2+3x+6-4=0\Leftrightarrow2x=0\Leftrightarrow x=0\)